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Topics of Research Interests     

 Terahertz and millimeter wave communications

 5G NR-U: 5G New Radio on Unlicensed Bands

 Dynamic spectrum sharing and policy for 5G and beyond mobile networks

 Cognitive radio networks and spectrum sensing techniques

 Co-channel interference analysis, mitigation, avoidance, and cancellation strategies

 In-building small cell network planning, design and deployment

 Planning, design and development of spectrum sharing algorithm for homogeneous (mobile

networks) and heterogeneous networks (mobile networks and satellite networks)

 Radio resource allocation and scheduling policy and algorithm

 Mobile MAC layer and physical layer issues

 Proof-of-concept evaluation of virtualization and Slicing of 5G radio access network (RAN)

 Cloud RAN (CRAN) in 5G era

 Fronthaul design for CRAN
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Background and Problem Statement (1)
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Recently, Cognitive Radio (CR) has been considered an effective technology to

address this issue.

The mobile radio spectrum specified for a country is allocated statically in an

equal amount to each of its Mobile Network Operator (MNO) regardless of

the inequality in the number of subscribers of one MNO from another.

• This uniform distribution of spectrum causes one MNO to allocate more

spectrum than necessary, whereas the other MNO suffers from the lack of a

sufficient amount of spectrum, resulting in low spectrum utilization.

• Due to this reason, such Static and Equal Spectrum Allocation (SESA) is no

longer considered effective.

In CR, the spectrum is given access to the secondary User Equipment (UE) with

the primary UE to use unused spectra of the primary UE opportunistically,

resulting in improving spectrum utilization.
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Background and Problem Statement (2)
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In this paper, we address this constraint by relaxing this assumption and present a

Dynamic and Opportunistic Spectrum Access (DOSA) technique for an arbitrary number

of MNOs to share the 28 GHz spectrum opportunistically with in-building Small

Cells (SCs) of each Fifth-Generation (5G) New Radio (NR) MNO with that of other

MNOs in a country.

Several research studies have addressed the spectrum allocation problem in CR systems.

To address constraints with SESA,

• an underlay CR access technique in Saha [1] and

• an interweave shared-use model in Saha [2] have been presented

to share the unused millimeter-wave (mmWave) spectrum of one MNO to another.
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However, both studies are limited by the assumption of a specific number of

MNOs in a country.



System Architecture 
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Figure 1. (a) System architecture of MNO 1 and SBSs of MNO 1

with the shared mmWave spectrum of other O-1 MNOs (b)

maximum (c) none. oMUE, offMUE, and iMUE denote,

respectively, outdoor, offloaded, and indoor macrocell UEs.

• An arbitrary O number of 5G NR MNOs in a country

is considered.

• Each MNO comprises three Base Stations (BSs),

including Macrocell BSs (MBSs), Picocell BSs (PBSs),

and Small Cell BSs (SBSs).

• An SBS of each MNO is located in each apartment of

any building, and

• each SBS can serve one Small Cell UE (SUE) at a time.

• SBSs operate in the 28 GHz, whereas MBSs and PBSs

operate in the 2 GHz, bands.

• Assuming similar architecture of all MNOs, Figure 1

shows the system architecture of MNO 1.



Proposed DOSA Technique    
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Assume the occurrence (i.e., either presence or absence) of an SUE of each MNO within an

apartment is equally likely over an observation period of such that

any combination of the occurrence of SUEs of all MNOs happens with a probability of
12OQ 

QT

The minimum reallocated spectrum of 0 and the maximum reallocated spectrum of           occur 

for an SUE of o, respectively, for no absence (Figure 1(c)) and no presence (Figure 1(b)) of SUEs 

of MNOs O\o in an apartment of a building.

n M

Let each MNO is allocated to an equal amount of 28 GHz, denoted as M in RBs where an

RB=180 kHz.



Problem Formulation     
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By Shannon’s formula, a link throughput at RB i in

TTI t in bps per Hz is given by [4],
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o is given by [5],
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Let each building has similar indoor characteristics,

the countrywide average capacity, SE, and EE of

MNOs O for L buildings are given, respectively, by,
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If DOSA is not employed, the system-level average capacity, SE, and 

EE of all MNOs for SESA are given, respectively, by, 
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Performance Result and Comparison 
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From Figure 2(a) for L=1:

• DOSA can provide 2.5 times average

capacity and SE as compared to that of the

traditional SESA. The additional 1.5 times

improvement in the performance of the

capacity and SE comes from reallocating

mutually the licensed mmWave spectrum of

one NR MNO to another.

• Due to the same reason, DOSA improves

EE by about 60% as compared to SESA.

From Figures 2(b)-2(c) for L>1:

• SE increases linearly, whereas EE

improves negative-exponentially, with an

increase in L.

• DOSA technique outperforms SESA with

a great margin in terms of SE and EE.
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Figure 2. (a) Performance improvement factors, (b) SE, and (c) EE responses.

• The proposed DOSA technique can achieve both SE (10 times

of 5G, i.e., 370 bps/Hz) and EE (10-100 times of 5G, i.e.,

0.03µJ/bit) requirements ([6]-[9]) expected for the 6G mobile

networks by reusing the countrywide mmWave spectrum for

46.87% less number of buildings of SBSs than that required by

SESA.



Conclusion 

We have presented a Dynamic and Opportunistic Spectrum Access

(DOSA) technique to allow opportunistic and dynamic access to the

static and equal licensed 28 GHz mmWave spectrum of one NR

MNO to that of the other in a country to serve their in-building SCs.
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Finally, we have shown, for an example case of four NR MNOs, the

outperformance of DOSA in CA, SE, EE, as well as the fulfilment

of both SE and EE requirements expected for the future 6G mobile

networks, over that of SESA.

We have then derived system-level Average Capacity (CA), Spectral

Efficiency (SE), and Energy Efficiency (EE) performance metrics for

an arbitrary number of NR MNOs.
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