
Empirical Studies and Measurement of Software
Special track along with 16th International Conference on Software Engineering Advances,

ICSEA 2021, October 4-6, 2021 in Barcelona, Spain

Luigi Lavazza
Dipartimento di Scienze Teoriche e Applicate

Università degli Studi dell’Insubria
Varese, Italy

email:luigi.lavazza@uninsubria.it

Abstract—This paper summarizes four presentations in the
special track “Empirical Studies and Measurement of Software.”
The research work deals with the following key issues of this
track:

• Adapting well-established measurement practices to evolv-
ing technologies and processes;

• Exploiting emerging technologies to improve the measure-
ment process;

• Evaluating newly proposed code measures.
This publication shows that the contributions in this track
address research questions that are of high importance for
industrial practice as well as current research.

Keywords–Cognitive complexity; software code measures;
McCabe complexity; cyclomatic complexity; Halstead mea-
sures; static code measures

I. INTRODUCTION

Software measures are of paramount importance for the
software development industry. Quite interestingly, there are
a few measure that were proposed long ago and still play
a fundamental role in software processes. An example of
such measures are Function Points, which were proposed by
Albrecht in the 70’s [1] and are still the most widely used
measure on which effort estimation is based. Alternatives
to Function Points, like COSMIC Function Points [2], have
been in use for a couple of decades and testify about the
importance of functional size measures, in general. Another
set of measures that have been defined long ago and are still
in use include Halstead metrics [3] and several maintainability
indices [4]–[6].

Although the aforementioned measures are widely used, and
partly because they are quite popular, there is the need to
adapt them to new types of software and new types of devel-
opment processes. When considering functional size measures,
the application of traditional Function Points or COSMIC
Function Points in agile processes is a challenge, because of
several reasons: requirements are usually non entirely known
and detailed at the beginning of the development process,
different “agile-specific” ways of carrying out sizing and effort
estimation were proposed (story points, planning poker, etc.),
people involve in agile development are not very well disposed
towards documents and measurement, ...

Software product organization is continuously evolving:
consider that software applications, once monolithic, became

client-server, then multi-tier, then service-based, and nowa-
days are often organized into microservices. Therefore, it is
hardly surprising that software measures must be continuously
adapted to capture aspects that previously did not exist.

Although a huge number of measures were proposed for
software through years, new measures are continuously pro-
posed. Adopting those measures implies acquiring new tools,
as well as the knowledge needed to understand and use the
measures. In addition, the repositories of historical data have
to be updated, and processes have to be modified to exploit
the knowledge conveyed by new metrics. Quite clearly, all this
involve a huge organizational effort. Thus, software developers
should spend time and money to adopt new measures only if
it has been demonstrated that the new measures do actually
convey some knowledge that “traditional” measure are not able
to provide.

The papers submitted to the “Empirical Studies and Mea-
surement of Software” special track at ICSEA 2021 deal
with the aforementioned hot topics. A brief description of the
papers is given in the following section.

II. SUBMISSIONS

The “Cognitive Complexity” measure was introduced with
the aim of improving the capabilities of McCabe complex-
ity [7] in indicating code that is difficult to understand and
maintain. “Cognitive Complexity” accounts for a few char-
acteristics of source code, including the number of decision
points (e.g., if, for, while and switch statements) and
the level of nesting of control statements. When the “Cognitive
Complexity” measure was proposed, no evaluations were pub-
lished concerning its relationship with traditional code mea-
sures. In his paper [8], Lavazza has reported about an empirical
study aiming at evaluating the correlation between “Cognitive
Complexity” and several traditional measures, including those
addressing the same characteristics of code taken into account
by “Cognitive Complexity.” To this end, Lavazza measured
a few open source projects’ code, obtaining the measures of
3,610 methods. He then performed statistical analysis using
both correlation tests (namely, Kendall’s and Spearman’s rank
correlation coefficients) and regression analysis. He found
strong correlations to McCabe’s complexity and slightly less
strong correlations to several other code measures. Several



regression models of “Cognitive Complexity” as a function
of traditional measures were found. Not surprisingly, one of
the most accurate models involves McCabe’s complexity, NLE
(Nesting Level Else-If) and LLOC (the number of logical
lines of code) as independent variables. Considering that the
best models found are quite accurate, Lavazza concludes
that, at least for the considered software projects, “Cognitive
Complexity” does not appear to convey additional information
with respect to traditional measures.

Fehlmann and Kranich addressed the application of the
COSMIC functional size measurement method in agile pro-
cesses [9]. In agile software development, story points are
used to indicate the effort needed to implement a user story,
and to track the progress of a software product under devel-
opment. One of their major limitations is that they do not
allow predicting the number of sprints needed to create or
modify a software product. Fehlmann and Kranich consider
functional size measurement methods (namely, IFPUG or
COSMIC methods) a more promising way to measure sprints.
However, the functional size of the product is not simply
determined by the total functionality implemented in sprints.
Agile teams often re-work the same functionality, because
new requirements concerning existing functionality must be
implemented, and some already implemented functionality
is removed. Moreover, activities like refactoring and testing
require some effort, which can be measured in story points,
but add no functionality. Fehlmann and Kranich investigate via
a case study how effort and functional size growth depend on
each other in sprints. Specifically, for each sprint, they mea-
sured the functional size of new developments, enhancements
and rework. They conclude that the difference between size
of the product and total size of all sprints, plus the amount of
enhancement works, reflects the effort needed to find the cor-
rect requirements by the agile team. Functional sizing allows
to better understand the percentage of effort that is needed
for non-functional requirements, refactoring and testing and
may vary strongly per sprint. Typically, “nonfunctional” effort
accounts for more than half of the total effort; thus, the value
of functional sizing for sprint planning is limited. However, for
predicting the number of sprints needed to reach a minimum
viable product, and for managing DevOps, functional sizing
is without alternative.

Pedraza-Coello and Valdès-Souto address the application
of the COSMIC measurement method [2] to software struc-
tured according to the Microservices Architectural Style [10].
Specifically, Pedraza-Coello and Valdès-Souto observe that
highly coupled microservices lead to both design-time prob-
lems, because of high interdependence between development
teams, and run-time problems involving latency and network
traffic. Being able to measure the coupling between microser-
vices in early phases of the software development life cycle
could help the software architects make better design deci-
sions. Therefore, they propose a way of measuring coupling
between microservices, based on the COSMIC measurement
method. Specifically, the proposed coupling measure is the
count of the entries and exits data movements of the func-

tional processes of a given micro-service that involve other
micro-services. Pedraza-Coello and Valdès-Souto illustrate the
application of the proposed measure in a simple software
application.

The functional size measurement processes suffer from
a few well-known drawbacks: one is that the measurement
activities can be rather long and expensive, another one is
that the measures are subjective, to some extent. Both these
problems stem form the fact that functional size measurement
is carried out by people, following measurement manuals
that do not provide uniquely interpretable measurement rules.
Therefore, it is hardly surprising that functional size measure-
ment automation, from software specification documents, has
been a research topic over the last several years. In industry,
software requirements are often written in natural language.
The recent advances in natural language processing (NLP) are
enabling the automatic extraction of valuable information from
text. NLP makes it possible to extract elements that support
functional size measurement from software requirements spec-
ifications written in natural languages. Gèrançon et al. [11]
propose a NLP-based tool that extracts “triplets” (composed
of subject, predicate and object) from text describing use cases
or user stories. The triplets belonging to the same functional
process are then identified, thus making it possible to measure
the size of the functional process in COSMIC Function Points,
every triplet representing a data movement.

III. CONCLUSION

The research results that have been presented at the “Em-
pirical Studies and Measurement of Software” special track
at ICSEA 2021 address hot topic in the field of software
measures and measurement. It is interesting to note that all the
session’s papers tend to confirm the utility and validity of well-
consolidated software measures: it is thuis worth investing
and researching in evolving, adapting and perfecting those
measures in advanced environments.

ACKNOWLEDGMENT

My great thanks go to the organizers for the kind reception
of this special track in the conference. This may include the
considerable administrative effort. Special thanks to the many
reviewers who gave the authors many valuable hints. Much
thanks to authors for the very interesting contributions and
the willingness to publish and present them.

REFERENCES

[1] A. J. Albrecht, “Measuring application development productivity,” in
Proceedings of the joint SHARE/GUIDE/IBM application development
symposium, vol. 10, 1979, pp. 83–92.

[2] Common Software Measurement International Consortium (COSMIC),
“The COSMIC Functional Size Measurement Method - version
4.0.2 Measurement Manual (The COSMIC Implementation Guide for
ISO/IEC 19761: 2017),” 2017.

[3] M. H. Halstead, Elements of software science. Elsevier North-Holland,
1977.

[4] T. Kuipers and J. Visser, “Maintainability index revisited–position pa-
per,” in Special session on system quality and maintainability (SQM
2007) of the 11th European conference on software maintenance and
reengineering (CSMR 2007). Citeseer, 2007.



[5] P. Oman and J. Hagemeister, “Metrics for assessing a software system’s
maintainability,” in Proceedings Conference on Software Maintenance
1992. IEEE Computer Society, 1992, pp. 337–338.

[6] I. Heitlager, T. Kuipers, and J. Visser, “A practical model for measuring
maintainability,” in 6th international conference on the quality of infor-
mation and communications technology (QUATIC 2007). IEEE, 2007,
pp. 30–39.

[7] T. J. McCabe, “A complexity measure,” IEEE Transactions on software
Engineering, no. 4, 1976, pp. 308–320.

[8] L. Lavazza, “An Empirical Study of the Correlation of Cognitive
Complexity-related Code Measures,” in Proceedings of the 16th Inter-
national Conference on Software Engineering Advances – ICSEA 2021,
2021.

[9] T. Fehlmann and E. Kranich, “Functional Size Measurement in Agile,”
in Proceedings of the 16th International Conference on Software Engi-
neering Advances – ICSEA 2021, 2021.

[10] R. Pedraza-Coello and F. Valdès-Souto, “Measuring Coupling in Mi-
croservices using COSMIC Measurement Method,” in Proceedings of
the 16th International Conference on Software Engineering Advances –
ICSEA 2021, 2021.

[11] B. Gèrançon, S. Trudel, R. Nkambou, and S. Robert, “Software Func-
tional Size Automation from Requirements Written as Triplet Structure,”
in Proceedings of the 16th International Conference on Software Engi-
neering Advances – ICSEA 2021, 2021.


