
Measuring Coupling in 
Microservices Using
COSMIC Measurement
Method
ROBERTO PEDRAZA-COELLO, FRANCISCO VALDÉS-SOUTO



ROBERTO PEDRAZA-COELLO
Master Student in the Computer Science and 
Engineering Postgradute program of the
UNAM. With a bachelor degree in Software 
Engineering.



FRANCISCO VALDÉS SOUTO
COSMIC President. Researcher-professor at the 
Sciences Faculty of the UNAM. With a Doctorate in 
Software Engineering specializing in Software 
Measurement and Estimation, Computer Engineer 
from the Engineering Faculty of the UNAM. 

More than 20 years of experience in critical 
software development, Founder of SPINGERE, the 
first Mexican company specialized in software 
measurement, estimation and evaluation, Founder 
of the Mexican Association of Software Metrics 
(AMMS).



Microservices Architectural Style (MAS)
Is one of the latest trends in software development
companies. Its main idea is to develop an
application as a set of small services. Each one of
these services is called a microservice [1].

Benefits/Characteristics

Each microservice is implemented and operated as a 
small an independent system [1].

Offers access to its internal functionality and data 
through a well-defined network interface [1].

Increases the software development process agility 
because each microservice is an independent unit of 
development, deployment, operations, versioning, 

and scaling [1].



MICROSERVICES
“The microservice architectural style is an
approach to developing a single application as a
suite of small services, each running in its own
process and communicating with lightweight
mechanisms, often an HTTP resource API. These
services are built around business capabilities and
independently deployable by fully automated
deployment machinery. There is a bare minimum
of centralized management of these services,
which may be written in different programming
languages and use different data storage
technologies. [2]”



MONOLITHIC VS MICROSERVICES

FUNCTIONALITY.exe

FUNC.exe

TIONA.exe

LITY.exe



COUPLING
In the OOP, low coupling is achieved
when each object depends on little or
nothing of other objects.

If the microservices depend a lot on each
other, then the coupling is high. If the
microservices depend little or none on
each other, the coupling is low.

It’s recognized that if the coupling is high,
then technological and management
problems can arise.

Coupling Measurements:

Coupling Between Object classes (CBO) by
Chidamber and Kemerer [3].

Measuring Coupling and Cohesion by Allen
and Khoshgoftaar [4].

Number of messages, number of distinct
method invocations, and distinct classes,
by Arisholm et al [5].

Dynamic method invocations, dynamic
messages, and distinct classes by Lavazza
et al [6].



WHY TO MEASURE COUPLING BETWEEN 
MICROSERVICES?

Measuring the coupling between
microservices in the early stages of the
software development cycle could help to
quantify the interdependency that exists
between different microservices. This could
improve the software architect’s decision
making in terms of avoiding, as far as
possible:

• High interdependency between teams

• Latency and network traffic.



COSMIC – FUNCTIONAL SIZE MEASUREMENT 
METHOD (ISO/IEC 19761)
Currently, the only type of software measurement
with international standards adopted by the ISO is
the measurement of functional size [7].

The COSMIC Functional Size Measurement method
complies with the metrology requirements [7].

The COSMIC sizing methodology is applicable to
any type of software (https://cosmic-sizing.org)

A course to learn to measure software with
COSMIC takes from 24 hours to 40 hours

https://cosmic-sizing.org/


COUPLING METRIC BASED IN COSMIC
Use the COSMIC concepts to measure the coupling
between microservices to ensure that the
measurement is consistent, repeatable and
comparable.

The COSMIC measurement manual explains how
to measure software by counting the data
movements in each of the functional processes.
There are certain rules of when a certain data
movement is considered for the measurement and
when not. The proposed coupling metric uses the
same rules that COSMIC uses.



OUR DEFINITION OF MICROSERVICES 
COUPLING
When said that MS1 is coupled to MS2, it is meant that MS1 depends on MS2 to complete a
certain portion of its own functionality. However, it doesn’t necessarily mean the same in
inverse mode

It can be said that MS1 is coupled to MS2 when MS1 starts a request/response communication
with MS2. A good analogy is to imagine a client-server architecture where MS1 is the client and
MS2 is the server, the client depends on the server, not the other way around.

In this sense, it is understood that there is a unilateral or bilateral coupling. A relationship
between two microservices can be hierarchical (exclusively one service uses the services of
another), or bidirectional (both services use services of the other service).



BASIC EXAMPLE
To measure how coupled is MS1 to MS2 we 
need to count, for each functional process of 
MS1, the number of data movements that are 
exchanged between MS1 and MS2, for all the 
cases where MS1 start the communication with 
MS2.

PF1: 1 (eXit) + 1 (Entry) = 2 CFP

PF2: 1 (eXit) = 1 CFP

How coupled is MS1 to MS2?

1 CFP + 2 CFP = 3 CFP



C-REG Case Study
The C-Reg case study [8] can be found in the
COSMIC web application. It shows the whole
process of measuring functional size.

To the best of our knowledge, this case study
was not thought as MAS software. However,
there is communication between the measured
software and other pieces of software.

We assume that the three pieces of software
mentioned in the case study were built as MAS.
This premise does not affect the COSMIC
measurement nor the Coupling measurement.



C-REG Case Study

C-Reg app counts with 19 functional processes
◦ 11 of these do at least one data movement between C-Reg 

and one or more software functional users.

◦ The rest of the functional processes only communicate 
with human functional users.



C-REG CASE STUDY
FUNCTIONAL PROCESS: DELETE PROFESSOR



C-REG CASE STUDY
FUNCTIONAL PROCESS: CLOSE REGISTRATION



C-REG CASE STUDY
MEASUREMENT RESULT



COUPLING METRICS ANALYSIS

• International Standard: Is it based on an
International Standard?

• Metrology Requirements: Does it comply
with the metrology concepts mentioned by
Abran [2]?

• Comparable: Is it valid to compare the
measurement results of different software?

• Proved on MAS: Is there a case study
where the metric (or an adaptation of it)
was used to measure coupling between
microservices?



CONCLUSION
Many companies are developing software based on MAS,
because of the multiple benefits that come with it.
Developers face multiple challenges when developing
software based on MAS.

Some problems could be generated becase of the coupling
that exists between microservices when achieving a
particular functionality (High interdependency between
teams, high network traffic, latency, etc)

We propose a way of measuring coupling between
microservices. This metric is based on the COSMIC
measurement standard to ensure that the measurement
obtained is consistent, repetable and comparable.



FUTURE WORK
There can be situations where low-coupled microservices are generating a lot of network traffic 
(high-usage functionality), and high-coupled microservices are generating little network traffic 
(low-usage functionality). Study to observe the correlation between coupling and network 
traffic.

Low coupling is a software quality characteristic in all software, not only on microservices. It 
would be interesting to find a way to adapt the proposed metric so it takes into account all kinds 
of software.

Comparison of how reliable are other coupling metrics against ours. Taking into account that a 
good measurement method is independent of the person measuring and the measurement 
environment. The measurement results have to be consistent, repeatable, and comparable.



REFERENCES
[1] P. Jamshidi, C. Pahl, N. C. Mendonca, J. Lewis, and S. Tilkov. Microservices: The journey so far and challenges 
ahead. IEEE Software, 35(3):24–35, 2018.

[2] M. Fowler and J. Lewis. Microservices - A definition of this new architectural term, 2014

[3] S. R. Chidamber and C. F. Kemerer. A Metrics Suite for Object Oriented Design. IEEE Transactions on Software 
Engineering,20(6):476–493, 1994.

[4] E. B. Allen, T. M. Khoshgoftaar, and Y. Chen. Measuring couplingand cohesion of software modules: An 
information-theory approach.International Software Metrics Symposium, Proceedings, pages 124–134, 2001.

[5] E. Arisholm, L, C Briand, and A. Føyen. Dynamic coupling measurement for object-oriented software. IEEE 
Transactions on Soft-ware Engineering, 30(8):491–506, 2004.

[6] L. Lavazza, S. Morasca, D. Taibi, and D. Tosi. On the definition of dynamic software measures. International 
Symposium on Empirical Software Engineering and Measurement, pages 39–48, 2012.

[7] A. Abran.Software Metrics and Software Metrology. 2010.

[8] A. Lesterius, A. Abran, C. Symmons. Course Registration (‘C - REG ’) System Case Study. (December):1–43, 
2015.


