

ICSEA 2021 - International Conference on Software Engineering Advances University of Sousse Higher Institute of Management of Sousse

المعهد العالى للتصرف بسوس stitut Supérieur de Gestion de Sousse ousse Institute of Management

An Ontology-based Approach for Conformance Checking of Decision Mining Rules

By : Sahar TOUMIA Dr. Asma MEJRI Pr. Sonia AYACHI GHANNOUCHI

Presenter's name and affiliation

Sahar Toumia, Master student in information system and decision support, Higher Institute of Management of Sousse, Sousse University, Tunisia, RIADI Laboratory, Manouba University, Tunisia

sahartoumia@gmail.com

1. Introduction

- 2. Related Work
- **3. Proposed Approach**
- **4. Approach Application**
- **5.** Conclusion and future work

Introduction

- Making the right decisions is one of the most important capabilities of an organization.
- **Decision mining** field allows :
 - identifying decision points
 - analyzing rules for each choice depending on the available attributes in the business process.

Scientific communities try to explore the decision support in organizations by emerging approaches on different decision ontologies.

Introduction: Research Objective

Introduction: Research Objective

- How to extract pertinent decision rules from event logs?
- How to check the validity of the extracted rules?
- How to compare the decision mining rules with the ontologies rules?

Related work

	Author	Busines mod	s process Ieling	Consideration of DMN	Consideration of ontology	Comparison between decision mining rules &ontology rules				
		BPMN	Petri net		oronology					
	A. Rozinatet al.2006		~							
	F. Mannhardtet al. 2015		\checkmark							
	F. Mannhardtet al. 2016		\checkmark							
	J. De Smedtet al.2016	\checkmark	\checkmark	\checkmark						
	E. Bazhenovaet al.2019	\checkmark		\checkmark						
I	E. Kornyshovaet al.2010				\checkmark					
	J. Camposet al.2018	\checkmark		\checkmark	~					
	Our approach	~	~	~	~	~				

Proposed Approach :Ontology-based approach for Conformance Checking of Decision mining rules: (O2CD)

8/19

Approach Application :Context of our experimentation

- Healthcare process for the management of COVID-19 patient.
- Department: the infectious diseases
 department of Farhat Hached in Sousse in
 Tunisia.
- Period: March 1, 2020 to May 31, 2020.

Approach Application: Data extraction

- Acquire an event log of the process from EHR (Electronic Health Record) information system.
- Event log was converted into CSV extension and filtered.
- **1024 events** were recorded involving 18 distinct activities, and 24 data attributes.

patient_ID	task	start_date	end_date	entry_modes	fever	engelure	headache	muscle_or	congestion	skin_rash	ageusia
50n	receive patier	21/04/2020 08:00	21/04/2020 08:10	emergency	1	0	0	0	0	0	0
50n	examine patie	21/04/2020 08:30	21/04/2020 08:40	emergency							
50n	start of isolati	21/04/2020 09:10	21/04/2020 09:30	emergency							
50n	assessment o	21/04/2020 09:40	21/04/2020 09:45	emergency							
50n	doing PCR tes	21/04/2020 10:45	21/04/2020 10:55	emergency							
50n	preparing for	21/04/2020 12:19	21/04/2020 12:40	emergency							
50n	decide diagno	21/04/2020 13:40	21/04/2020 14:00	emergency							

Approach Application: Process Model Discovery phase

- BP mined from the event log was discovered.
- Management of COVID-19 patients process: initiates with the reception of the patient and ends with her/his discharge or choosing a COVID-19 procedure.
- Main tasks: examine the patient, evaluate the degree of emergency, doing PCR, preparing for hospital stay, deciding the appropriate diagnostic protocol and the clinical examination, and evaluate the patient's status.

Approach Application: Decision Mining Rules Discovery

Discovering the rules on the Petri net model :

Approach Application: Ontology selection phase

- Select the most appropriate ontology in the context of COVID-19 pandemic.
- The inference rules were written in the Semantic Web Rule Language (SWRL).

COviD-19 Ontology for cases and patient information (CODO)[1]

IIB. Dutta and M. DeBellis, "CODO: An Ontology for Collection and Analysis of Covid-19 Data," no. November, pp. 76–85, 2020, doi: 10.5220/0010112500760085.

Approach Application: Representation of Decision Mining rules and ontology rules through DMN

- Presenting how the decisions discovered in process models can be expressed into the corresponding elements of the DMN model.
- DMN defines two levels: decision requirements
 diagram (DRD) level and decision logic level
 (DL).

	Inputs													
F	Respi	ratory Rate		Fever		Test Result	N	Aode Entry	case type Text					
	٨	lumber	{has	symptom fever}		{positive}		{SAMU}						
1	s	22	=	has symptom	=	positive		-	"mild "					
2	c	[2228]		-	=	positive	=	SAMU	"moderate "					
3	>	28		-	=	positive	=	SAMU	"severe "					

Approach Application: Representation of Decision Mining rules and ontology rules through DMN

• Expressing the ontology rules through DMN elements.

Approach Application: Conformance checking between decision mining rules and ontology rules

decision tables

Λ

															~	
	CaseId	Respiratory F N	Aeasured F€Test Res	sı Fever	Cough	SPO2	Result	Name	CaseId	Respire	atory Test Result	Fever	Mode Entry	result		
	:	1 19	38,2 positive	has symptom	f has sympton	n 100) mild	testCases	1		19 positive	has sympto	m fever	mild	True	Conformance
	2	2 30	37 positive	has symptom	f has sympton	n 100) severe	testCases	2		30 positive	has sympto	n SAMU	severe	True	Conformance
	3	3 20	38 positive	has symptom	f has sympton	n 96	5 mild	testCases	3	}	20 positive	has sympto	n SAMU	mild	True	Conformance
	4	4 16	39,6 positive	has symptom	f has sympton	n 98	3 mild	testCases	4	ļ	16 positive	has sympto	n SAMU	mild	True	Conformance
	,	5 16	39,2 positive	has symptom	f has symptom	n 98	3 mild	testCases	5	5	16 positive	has sympto	n SAMU	mild	True	Conformance
	(6 19	38,2 positive	has symptom	f has sympton	n 93	3 moderate	testCases	6	5	19 positive	has sympto	n SAMU	mild	False	Please check the patient statu
	7	7 18	38,1 positive	has symptom	f has sympton	n 98	3 mild	testCases	7		18 positive	has sympto	n SAMU	mild	True	Conformance
	8	8 24	37,1 positive	has symptom	f has sympton	n 92	2 moderate	testCases	8	}	24 positive	has sympto	n SAMU	moderate	True	Conformance
	9	9 28	37 positive			92	2 moderate	testCases	9)	28 positive			moderate	True	Conformance
	10	0 24	37,3 positive	has symptom	f has sympton	n 98	3 mild	testCases	10)	24 positive	has sympto	n SAMU	moderate	False	Please check the patient statu
	1:	1 24	37 positive	has symptom	f has sympton	n 99) mild	testCases	11	l	24 positive	has sympto	n SAMU	moderate	False	Please check the patient statu
	12	2 30	36,5 positive			100) severe	testCases	12	2	30 positive		SAMU	severe	True	Conformance
	13	3 24	37 positive			94	1 moderate	testCases	13	;	24 positive		SAMU	moderate	True	Conformance
	14	4 16	38,3 positive	has symptom	f has sympton	n 99) mild	testCases	14	Ļ	16 positive	has sympto	m fever	mild	True	Conformance
	15	5 24	37 positive			94	1 moderate	testCases	15	;	24 positive		SAMU	moderate	True	Conformance
	16	6 24	37 positive			94	1 moderate	testCases	16	i	24 positive		SAMU	moderate	True	Conformance
	17	7 28	37 positive			92	2 moderate	testCases	17	1	28 positive		SAMU	moderate	True	Conformance
1																

The formula returns :

- true if the results are exactly the same.
- False if there are any differences.

ontology rules

DM rules

Conclusion and Future work

Approach: Proposal of an ontology-based approach for conformance checking of DM rules using ontologies.

Method :

Identification of decision rules in the control flow of process models and the derivation of corresponding DMN models.

Selection of an ontology and the derivation of corresponding DMN models.

Checking similarity between ontology rules and decision mining rules.

Approach application: In the COVID-19 crisis unit of the Farhat Hached University Hospital Center.

Conclusion and Future work

Future work :

- Create an automatic tool for extracting the divergent cases when comparing DM rules and ontology rules.
 - Rely on similarity metrics specifically dedicated to semantic similarity.

Thank you for your attention!