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Motivation & Research Objective
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Related Work

SoS Architecture Selection

Simulation-based Methods
Ø Agent-based simulation
Ø Petri net based simulation
Ø Parametric models

Optimization-based Methods
Ø Mathematical optimization:
Evolutionary algorithms

Ø Modern portfolio theory

Trade-off Space Exploration
Ø Multi-attribute tradespace
exploration (MATE)
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Related Work

Impact of
Interdependency

Architectural
Path Selection

Simulation-based Methods
Ø Message passing between different agents
Ø Token flows between places and transitions
Ø Dependency parameters; Conditional probability

Optimization-based Methods
Ø Synergy value
Ø Compatibility/prerequisite constraints
Ø Co-variance

Dynamic Strategic Planning based Methods
Ø Real options analysis
Ø Epoch-era analysis
Ø Time-expanded decision network

Algorithm based Methods
Ø Evolutionary algorithms
Ø Approximate dynamic programming (previous work)

Issues:
v Interdependency in
the optimal
architecture
selection problems
has not been well
captured

v Inadequate support
for multi-stage
architecture
development

Weighted sum of capability →
inadequate
Linear value function
approximation → inadequate
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SoS Architectural Path Selection Problem

Representation of SoS Architecture
Functional Architecture
- Adopts “Information Age Combat Model
(IACM)” proposed by Jeffrey Cares

- IACM includes elements: Target (T),
Sensor (S), Decider (D), Influencer (I)

Physical Architecture
- Alpha-level systems: sensor entities,
Command and Control (C2) entities, and
firing entities

- Beta-level systems: integrated platform
including sensor, C2, and firing entities
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SoS Architectural Path Selection Problem

i j

Inherent Interdependency 

Operational Interdependency
(i.e., Interoperability)

“Able to provide”

“Need to provide”

Impact of Interdependency

!"#$ = &'$ ( )'$ ( !"#' + 1 − &'$ ( -.$

Inherent Interdependency
- Inherent functional need that centers on required
information exchange between two nodes

- &'$: degree of dependency
- &'$ = 0: node 1 can work well without any
support of node 2

- &'$ = 1: node 1 cannot work at a;; without
information from node 2

Operational Interdependency
- Functional capability of conducting satisfactory
information exchange between two nodes

- )'$: interoperability level
- )'$ = 1: full interoperability
- )'$ = 0: zero interoperability
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SoS Architectural Path Selection Problem

SoS Architectural Path Selection

Path Selection Process
- Sequential allocation of
candidate systems to
functional architecture

- Objective: Maximize
combat mission
capability

- Assumption
- Candidate systems
are given

- Functional
architectures are
given and fixed
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Mathematical Formulation
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State variables

Decision variables

Reward function

Arch. Decision

… … …

Arch. State

Markovian Property Satisfaction
- An SoS architecture state (analogous to 

MDP state) contains full information of
the architectural history

- An architecture state depends only on
the architecture state of the previous
decision stage
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MDP: Markov Decision Process

Reward function refers to the operational capability 
of node Influence 156B,C that indicates the threat 
neutralization capability at each decision stage. 
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Mathematical Formulation

Transition function
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Approach: Deep Reinforcement Learning (DRL)

Brief Introduction to Reinforcement Learning

Agent

Environment

ActionReward State

§ No supervisor → Learning based on
feedback and improvement

§ Sequential decision-making
§ Q learning

§ Value-based learning algorithm that
updates the action-value function
Q(S,X) based on Bellman Equation

§ Simple problems can directly use Q-
Table Q(S,X) to calculate and store
the maximum expected future
rewards for action at each state

§ For high-dimensional problems, Q-
Table is insufficient
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Approach: Deep Reinforcement Learning (DRL)

!"##(%&) = E *+,-./0 + 2 max
67

89/:; </:;, >/:;; %&@ − 89/(</, >/; %&
B

Techniques: Deep Q Network (DQN)
§ Q learning
§ Functional approximator:
Convolutional Neural Network
(CNN)

§ Experience replay: remove
correlation between observation
sequences

§ Target network + evaluation
network

§ Parameter noise: support
exploration
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Illustrative Study

Example Sys Self-Cap 
Limit

Initial Self-
Cap

Dev 
Rate 

Cost 
(m$)

ISR USV Class A Radar I S1 40 40 (0,0) 80
ISR USV Class B Radar I S2 40 40 (0,0) 120
ISR USV Class A Radar II S3 50 40 (1,1) 110
ISR USV Class B Radar II S4 50 40 (1,1) 130
ISR USV Class A Radar III S5 60 36 (2,1) 150
ISR USV Class B Radar III S6 60 36 (2,1) 180
ISR USV Class C Radar III S7 70 35 (3,1) 160
…… … … … … …

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14

S1 HL HL HL HL HL HL ML ML ML ML ML ML LL LL
S2 HL HM HL HM HM HM MM MM MM MM MM MM LM LM
S3 HL HL HL HL HL HL ML ML ML ML ML ML LL LL
S4 HL HM HL HM HM HM MM MM MM MM MM MM LM LM
S5 HL HM HL HM MM MM MM MM MM MM LM LM LM LM
…
… … … … … … … … … … … … … … …

Candidate systems and input parameters

Interdependency between sensor-decider system pairs

Mosaic Warfare
- Decompose monolithic multi-mission units

into a larger number of smaller elements
- Distributed maritime operations

- ISR USV, C2 USV and AMD USV with
different TRLs

- Interdependency
- Left: inherent (L = 0.1, M = 0.4, H = 0.8)
- Right: interop (L = 0.1, M = 0.5, H = 1)

ISR: Intelligence, Surveillance and Reconnaissance; AMD: Air and Missile Defense; USV: Unmanned Surface Vehicle; TRL: Technology Readiness Level
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Illustrative Study

Hyperparameters Values

Mini-batch size 512

Discount factor 0.9

Q learning rate (stepsize) 0.8

Experience replay memory size 10000

Target network update frequency 500

CNN network layer 4

CNN learning rate 0.001

Optimizer Adam

Activation function ReLU

Noise N(0,1)

Environment

§ Python 3.7
§ PyTorch machine learning library
§ AMD Ryzen-2600X CPU
§ 16GB 3000MHZ memory
§ GeForce RTX-2080 GPU
§ WIN 10 operating system

Additional Input

§ Horizon: 10 stages
§ Budget: 1000 m$ initially; receives 

additional 500 m$ each stage
§ Intermediate requirement: Stage 3

>= 100 units; Stage 6 >= 250 units
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Illustrative Study
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§ Left: training curve tacking total capability of combat SoS.
§ Capability of the entire SoS architecture converges after around 150 training epochs.
§ Fluctuation still exists but remains stable and the MSE loss function stays around 2.

§ Right: most often suggested architectural path and resultant capability (circle: S; square: D; diamond: I).
§ Decider systems and influencer systems with advanced technologies are often selected at the beginning 

whereas sensor systems with high readiness level are selected. 
§ SoS architect agent is smart enough to choose those systems with large potentials in the future. 
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Illustrative Study

§ GA_Global: assumes full predictability of future information and establishes a big optimization 
problem containing all architectural path decisions at ten stages. 

§ GA_Myopic: only considers now and does not account for any information from the future.

§ DQN algorithm provides the largest
average capability value of 448 units and 
lowest standard deviation of 10 units. 
→ DQN provides more stable solution in
an uncertain environment

§ GA_Global provides slightly lower average
capability value (429 units) and larger
standard deviation (24 units) than DQN
algorithm.

§ GA_Myopic offers lowest capability value 
of 232 units since it only sees the current 
situation without any consideration of future 
possibility. 
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Conclusion & Future Work

• Conclusion

– Developed DQN algorithm to support the SoS architectural path selection 
under uncertainty;

– Built a simple parametric model to capture the impact of interdependency 
on SoS capability;

– Applied the method to a synthetic USV-centered naval AMD SoS.

• Future Work

– Assumption relaxation, such as one system for one type of function;

– Development of more effective DRL algorithms and techniques;

– Robust and resilient architectural path selection.
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