

REINFORCEMENT LEARNING FOR EMERGENT BEHAVIOR EVOLUTION IN COMPLEX SYSTEM-OF-SYSTEMS

ANITHA MURUGESAN

anitha.murugesan@honeywell.com

RAMAKRISHNAN RAMAN

ramakrishnan.raman@honeywell.com

April 12, 2021

PRESENTATION OUTLINE

1. System of Systems

- Introduction
- Measures of Effectiveness
- Emergent Behavior
- Autonomous Systems

2. Proposed Approach

- Reinforcement Learning
- **3.** Illustration and Implementation
- 4. Results
- **5.** Conclusion and Future Steps

SYSTEM-OF-SYSTEMS (SoS) - INTRODUCTION

- System-of-Systems are systems-of-interest whose system elements are themselves systems - they typically entail large-scale inter-disciplinary problems involving multiple, heterogeneous and distributed systems
- Each system has an independent purpose and viability, in addition to the SoS by itself having an independent purpose and viability
- Typically entail large scale interdisciplinary problems involving multiple, heterogeneous, distributed systems

MEASURES OF EFFECTIVENESS

- Metric to evaluate achievement of the objective
- Manifest at the boundary of the system and SoS.

MOE Relationship Matrix

		MOEs of constituent Systems							
Relative importance of each SoS MOE System Of System - MoEs	√ SoS MoE Weight	SysA-MoE-1	SysA-MoE-2	SysA-MoE-3	SysB-MoE-1	SysB-MoE-2	SysC-MoE-1	SysC-MoE-2	Relative impact of each System MOE on each
SoS-MoE-1	9	9	9	7					SoS MOE
SoS-MoE-2	7			5	7	7	7		K
SoS-MoE-3	5	7	9	5					
SoS-MoE-4	1	9	9	7				7	
System A is a key player in the SoS	Raw score	125	135	130	49	49	49	7	
	Relative Weight	21%	22%	21%	8%	8%	8%	1%	
	Rank	3	1	2	5	5	5	8	

COMPLEX SOS – EMERGENT BEHAVIOR

Emergence refers to the ability of a system to produce a highly-structured collective behavior over time, from the interaction of individual subsystems

AUTONOMOUS SYSTEMS

- Numerous increasingly autonomous systems developed independently.
 - Example: Drones, Urban Air taxi...
- Use AI/Machine Learning techniques
- Currently, their goals are tied to their own mission.

How to develop autonomous systems that optimally

balance SoS-level and System-level MOEs?

Image Credits: https://www.internationalairportreview.com/wp-content/uploads/remote-atc.jpg https://www.cleanpng.com/png-aircraft-airplane-flight-joby-aviation-vtol-big-pa-1551489/download-png.html https://www.cleanpng.com/png-air-taxi-airplane-technology-transport-png-air-3112243/download-png.html https://www.clipartmax.com/middle/m2i8m2A0N4d3A0d3_walla-air-air-traffic-control-tower-clipart/ https://www.clipartmax.com/download/m2i8N4m2d3H7G6H7_across-the-supply-chain-delivery-drone-icon/ https://www.clipartmax.com/download-pngtsatelilite-clish-royaliv-free-vector-clip-art-illustration-269939.png

5

APPROACH OVERVIEW

REINFORCEMENT LEARNING (RL)

- Agent "learns" an optimal policy by iteratively interacting with the environment
 - performing an action and receiving reward
 from the environment.

Design rewards using MOE Relationship Matrix

ILLUSTRATION & IMPLEMENTATION

Levels of Performance of System-A in terms of MOEs

SysA-MOE-1	SysA-MOE-2	SysA-MOE-3
V1-1	V2-1	V3-1
V1-2	V2-2	V3-2
V1-3		V3-3

States as mapped to various performance levels of MOEs

STATES	SysA-MOE-1	SysA-MOE-2	SysA-MOE-3	
S1	V1-1	V2-2	V3-1	
S2	V1-2	V2-1	V3-3	
S3	V1-3	V2-1	V3-2	
S18	V1-3	V2-2	V3-3	

Grid World Environment in Matlab

RESULTS

CONCLUSION AND FUTURE STEPS

Defined an approach to use RL for training systems of SoS using MOE

Relationship Matrix

- Demonstrated the idea using a proof-of-concept application.
- Next Steps:
 - Analyze the scalability of our approach in more complex systems
 - Explore the use of deep RL algorithms

THANK YOU

Anitha Murugesan

anitha.murugesan@honeywell.com

Ramakrishnan Raman

ramakrishnan.raman@honeywell.com

