

Keynote at ICONS 2021

Human Skill Transfer for AI Accelerator Programming and Its Application to Humanoid Two-Handed Robots

Prof. Chung-Ta King king@cs.nthu.edu.tw Department of Computer Science National Tsing Hua University, Taiwan

About Me

- 1988: Ph.D., Michigan State University, USA
- 1988-1990: Assistant Professor, NJIT, USA
- 1990-1997: Associate Professor, NTHU, Taiwan
- 1997-: Professor, NTHU
- 2009-2012: Chair, Dept of CS, NTHU
- 2014-2015: Associate Dean, College of EECS, NTHU
- 2019-: Vice President and Chief of Staff, NTHU
- Research interests: embedded & mobile computing, computer architecture, parallel & distributed systems
- Conference organizer: Cluster 2016, ICPADS 2014, CloudCom 2012, ESWeek 2011, ...

Acknowledgements

- This talk is based the outcomes obtained so far from a 4-year project (2019-2022) funded by the Minister of Science and Technology, Taiwan, under the Moon-Shoot Project
- Team members:
 - Professors Cheng-Wen Wu, Jen-Yuan Chang, Jing-Jia Liou, Chih-Tsun Huang, and Hung-Kuo Chu of National Tsing Hua University, Taiwan
 - Over 20 research staffs and graduate students

Growing Importance of Service Robots

https://www.pinterest.com/pin/127719339416902130/

Medical care, logistics, farming, household, companion, education, entertainment, ...

Growing market size to > \$20 Billion in 2024

Humanoid, 5-fingered hands desirable for adapting to varying tasks and dynamic environments

Challenge: Complexity in robot controls due to very high *degree-of-freedom* (DOF) and complex working environments \rightarrow application developments

Fast Development of Robot Applications

Common practices:

- Programming by programmers
- Moving arms to set actions
- Training and imitation

To handle dynamics:

- Sensing: vision, touching
- Planning and decision
- Control

Imitation for Fast Application Development

Human demonstrates:

- What are sensed (vision, touch, ...)?
- What actions are performed in response?
 → Without expertise in robotics

Robot imitates:

- Not just clone trajectories and actions (*behavior cloning*)
- Must be able to adapt and generalize

Problems with Imitation

Scattered tools relying on manual interfacing	Training with physical robots too slow and unsafe	Process from NN models to AI accelerators too long	Design space exploitation difficult and inefficient				
Need a systematic flow for fast development of robot applications from human demonstration onto accelerator chips							

Human Skill Transfer for AI Accelerators

Two design flows:

- From human skills to AI model for robot control
 - Collect data from human demonstration to train robot control models in a virtual environment
- From AI model to AI accelerator chips
 - Compile and optimize the AI control model to run on AI accelerators

A humanoid, dual-hand robot:

• Controlled by AI accelerators that run neural networks

Project Overview

Demonstration of Trained Robot Operations

Operations by physical robot (3X speed)

Operations in simulator

Demonstration of Trained Robot Operations

Operations by physical robot (3X speed)

Operations in simulator

Humanoid Dual-Hand Robot

(Prof. Jen-Yuan Chang)

7-DoF arms

- Redundant DoF kinematics
- 7-DoF obstacle avoidance

Vision system

- RGB-D camera
- 2-DoF head rotation

Wire-drive 5-fingered hand

Underactuated wire-driven
 5-fingered gripper

國立情華大學

National Tsing Hua University

• Touch sensor feedback

Soft hand + IMU

- Flexible 5-fingered gripper
- Pneumatic actuation
- IMU for angle feedback

Self-Adaptive Finger Joints

(Prof. Jen-Yuan Chang)

	Shadow Robot – Hand Lite	NTHU Hand
DoF	13	7
Weight	2.4 kg	1 kg
Loading	4 kg	1 kg \rightarrow 3 kg
Driving	Wired (motor fixed)	Wired (motor separated)

國立情華大學

- Underactuated design: 1 actuator to drive two joints
 - Better grasps of unknown objects
 - Self-adaptive to errors in grasping

Magnetic-based Touch Sensor

(Prof. Jen-Yuan Chang)

Softhand + IMU

(Prof. Jen-Yuan Chang)

Real-time Obstacle Avoidance

(Prof. Jen-Yuan Chang)

Object and skeleton detection

Robot Vision System

(Prof. Hung-Kuo Chu)

Rotate camera to increase field-of-view

國立情華大學

Object Detection SNN AI Chip

(Prof. Cheng-Wen Wu)

Application-specific NN-based AI accelerator design:

 Choose network parameters to optimize hardware cost and power consumption in terms of accuracy, network throughput, ...

國立情華大學

Object Detection SNN AI Chip

(Prof. Cheng-Wen Wu)

- Based on spiking neural network
- Application-specific (label detection)
- Optimized parameters

國立情華大學

Design	Ours	BinarEye CICC'18	IBM TrueNorth
Technology	90nm	28nm	28nm
Area [mm²]	2.07	1.4	430
Algorithm	SNN	DNN	SNN
Voltage [V]	0.6 - 1	0.66 – 0.9	1
Frequency [MHz]	10 - 100	1.5 – 48	-
Efficiency* [TOPS/W]	331 – 45	230 – 145	-
MNIST Energy* [uJ/inference]	0.18 @ 98.01%	0.2 @ 97.4%	6.5 @ 97.5%
*values are scaled to 28nm technology node.		1.4X efficiency, 10% less power	

Object Detection SNN AI Chip

USB

(Prof. Cheng-Wen Wu)

Control API

國立情華大學

National Tsing Hua University

Chip demo platform

• 300 detections/sec

NTHU LARC

• 0.6 V operating voltage

C51-100

Imitation-based Training Platform

(Prof. Chung-Ta King)

Electronics-Mechatronics Co-Simulation

- SystemC and Webots data exchange interface
- Control hardware delays are feedback to robot arm
- Verify accuracies of AI models on robot arm operations

Architecture of Virtual Design Platform (Prof. Jing-Jia Liou)

National Tsing Hua University

• Hardware components:

• MCU, DMA

- Al accelerator modules: Conv, Pool, Relu, etc.
- Shared memory of Al accelerator modules
- RISC-V MCU for controlling dataflows of various AI accelerator modules
- All in SystemC

Electronics-Mechatronics Co-Simulation (Prof. Jing-Jia Liou)

AI model for robot arm

- Grasping
- 4 FC layers (64, 32, 16, 7)

TVM optimization

Pipelined execution

國立情華大學

National Tsing Hua University

- Operator fusion
- 14%X speedup

Data exchange

• Delays of accelerator hardware to robot simulator

Electronics-Mechatronics Co-Optimization

Layer Fusion for Data Reuse in Acc. Memory

• For Depthwise Separable CNNs

國立情華大學

National Tsing Hua University

(Prof. Chih-Tsun Huang)

- Evaluation for MobileNet-v2
 - 67% speed improvement
 - 65% power consumption improvement

Conclusions

- An AI chip development environment based on human skill transfer
 - Automate the process and lower the complexity in developing service robot applications
 - Humanoid robot hand with 7-DOF arms, CMOS spiking neural network ASIC, design flows from human skills to AI model and to AI accelerator for robot control
 - Allow more complex robot applications to be more easily developed at a lower cost
- On-going works
 - Robot control with touch sensor feedbacks, memristor-based SNN, longhorizon task planning, hierarchical control models, ...

