Keynote

Wireless Industrial IoT: the Next Generation of Industrial Networking

Rute C. Sofia (sofia at fortiss dot org)

fortiss - research institute of the Free State of Bavaria for software-intensive systems Industrial IoT Competence center Head

IARIA

IARIA ICNS2021 Keynote Talk (virtual) 17th International conference on Networking and Services May 30th 2021 – June 3rd 2021 – Valencia, Spain

Rute C. Sofia

IIoT Head @ fortiss, Munich, Germany, since 2019

Invited positions:

Invited Associate Professor @ University Lusofona, Lisbon, Portugal, since 2019 Associated researcher @ ISTAR, Instituto Universitário de Lisboa, since 2017

Past positions:

Associate Professor/Senior Researcher, COPELABS/University Lusófona, Lisbon, Portugal 2013-2017: Scientific Director, COPELABS research unit (wireless, IoT, 4G/5G, ICN) 2010-2013: Scientific Director, SITILABS research group (wireless, IoT, 4G/5G, ICN)

- CEO & co-founder, startup Senception Lda (pervasive sensing), Lisbon, 2013-2019
- IAN area leader, INESC TEC, Porto (wireless, QoS, routing), 2007-2010
- Senior Research Scientist, Nokia Siemens Networks GmbH, Munich, 2007
- (high-speed networking, carrier grade Ethernet, IPv6, QoS)
- Senior Researcher, Siemens AG, Munich, Germany (high speed networking, carrier grade Ethernet, IPv6, QoS), 2004-2007
- Senior Researcher, IIS, Bundeswehr Universität, Munich, (QoS, IPv6) 2004
- WAN Engineer, FCCN, Lisbon, Portugal (Cisco WAN operations), Lisbon, 1998-2003
- Engineer, Grupo Forum, Lisbon, Portugal (NetSys admin), Lisbon, 1995-1998

•Research Interests: IoT; network architectures and protocols; in-network computing •PhD in Informatics: 2004, University of Lisbon

•Visiting Scholar (2000-2003), University of Pennsylvania, PA, USA (Roch Guérin, MNLab)

•Visiting Scholar (2000), Internet Center for Advanced Internet Research (ICAIR), Northwestern University, Evanston, IL, USA

•M.Sc in Informatics: 1999, University of Lisbon

•B.Eng in Informatics: 1995, University of Coimbra (specialization in network and computer architectures)

About fortiss

http://www.fortiss.org

Legal form: non-commercial limited company

► Foundation: 2009

Shareholders: Free State of Bavaria (2/3) and Fraunhofer-Gesellschaft (1/3)

2 locations 1500 employees current projects

Subjects

What we do research on

Autonomous Systems Blockchain **Business Models Human-centered** Engineering **IIOT** Information **Management Cognitive Structures Robust Al Machine Learning** Human-Robot Interaction Performance Engineering Software and Systems Engineering Safety and Security Service Engineering **Decentralized Services Neuro**morphic Computing Requirements **Engineering** Service Engineering **Open Data**

Industries

Where we apply our research

Industrial Internet of Things

-Enabling next generation IIoT Applications-

Decentralized Edge Computing	Edge/Fog architectures & service orchestration Reduced latency & increased efficiency Cross-platform interoperability				
Real-time System Adaption	Semantic integration of brownfield devices Artificial Intelligence on the edge (Edge AI) Dynamic container orchestration				
In-network Computation and Analytics	In-network processing for controlMore flexible infrastructuresAdaptive computation				

Aims

- Novel communication & computation architectures for IIoT (OSI Layers 2 to 7)
- Efficiently, robustly, and possibly predictively deploy and orchestrate services
- Seamless computing for decentralized IIoT services

Evolving software-based communication and computation systems for Industrial IoT

Our Offer

Architecting Edge-Cloud Support

- Open-source edge/server gateways
- Semantic integration of brownfield devices
- Dynamic container orchestration (e.g., Kubernetes, Docker Swarm)

Supporting Intensive IIoT applications

- Performance improvement and analysis of communication protocols (e.g., MQTT Sparkplug, OPC-UA, DDS)
- Adaptation of the infrastructure to better support service decentralisation

Training Aspects

- Hands-on workshops on IIoT
- Technical mentorship on advanced IIoT software

IIoT Lab

Wireless Industrial IoT

The next generation of industrial networking

Motivation

- IIoT applications have strict requirements (e.g., subsecond latency; low jitter, guaranteed bandwidth)
- IIoT infrastructures rely on "Time-sensitive Networking (TSN) to support strict requirements
- IIoT environments are wireless and wired based
 - Wi-Fi6/7 needs tunning to support IIoT applications strict requirements

Aim and Focus

- Determinism support in IIoT wired/wireless (WiFi 6, Wi-Fi
 7)
 - Explore wireless mechanisms that can support strict guarantees in wireless (Wi-Fi 6, Wi-Fi 7)
- Backward compatibility with Time Sensitive Networking/Ethernet
 - Traffic profile characterisation
 - Support of tight time synchronisation
 - Support of Time-aware scheduling

Outcome

- Tight Time synchronisation validation based on the wireless Fine Time Measurement (FTM) protocol (IEEE802.11AS-2020)
- Flexible, Time-Aware Scheduling based on the wireless Target Wake Time (TWT) mechanism
- Proof-of-concept demonstrations on the fortiss Industrial IoT Lab

Which Requirements?*

- Wireless Industrial Services Today
 - Sources: IEEE 802.11 Nendica, IEEE 802.11 RTA TIG, IETF DetNet RFC 8578, Avnu Alliance, 5G ACIA 5G for Connected Industries and Automation White Paper, NICT report on wireless use-cases and communication requirements in factories, IEB113 report on TSN and rail metro networks, IETF RAW use-cases, ITU-R report on technical characteristics and operational goals of *Wireless Avionics Intra- communications (WAIC)*
 - Collection of 31 services, grouped into 13 different categories with objective communication KPIs (latency, packet loss, jitter, payload size, etc.)
- Debate on novel industrial wireless services
- AR/VR Services within flexible factories
- Decentralized shop-floor communication services
- Autonomous airbone services
- Debate on 3 examples of future industrial services; recommendations for wireless integration and specific communication KPIs
- <u>*R. Sofia, M. Kovatsch, P. Mendes, Requirements for Reliable Wireless Industrial Services, draft-sofia-raw-industrialreq00</u>

Which Requirements? Examples Today

Use-case	IEEE Nendica	IEEE 802.11 RTA	IETF DetNet	Avnu	5G ACIA	NICT	IEB113	IETF RAW	IIC	ITU-T WAIC
Equipment and processes control	Х	Х	Х	Х	Х	Х		Х	Х	
Quality supervision	Х					Х			Х	
Factory resource management	Х	Х				Х			Х	
Display	Х					Х				
Human Safety	Х					Х			Х	
Industrial systems	Х	Х				Х			Х	
Mobile Robots	Х	Х		Х	Х	Х			Х	
Drove/UAV control		х						х	Х	
Power Grid control			Х							
Communication based train networks							Х			
Mining Industry			Х							
Connected Cabin				Х						Х
Wireless Avionics Intra- communication										Х
<u>*R. Sofia, M. Kovatsch, P. Mendes, Requirements for Reliable Wireless Industrial Services, draft-sofia-raw-industrialreq00</u>										00

Which Requirements? R. Sofia, M. Kovatsch, P. Mendes, draft-sofia-raw-industrialreq00

Collected Requirements

- Reasons for wireless integration
- Considerations for communication requirements
- Latency
- **Periodicity** stands for whether or not the data transmission is executed in a periodic fashion
- Cycle, if available
- Transmit data size (data payload) in bytes
- Tolerance to packet loss
- Time synchronisation needs (e.g., requirement for IEEE 1588 synchronisation)
- Node density/number of nodes supported

Example: equipment and Process Control

- Reasons for wireless integration: flexibility of deployment; reconfigurability; mobility; maintenance cost reduction.
- Control of machines and robots services
 - Bounded latency: less than 10 ms.
 - Periodic
 - Transmit data size (bytes): 10-400 (small packets)
 - Tolerance to packet loss: 0.
 - Time synchronisation: IEEE 1588
 - Node density: 1 to 20 (per 20 m x 20 m)
- PLC to PLC communication
 - Bounded latency: 100 us to 50 ms.
 - Transmit data size: 100-700
 - Tolerance to packet loss: 0
 - Time sync: IEEE 1588

Reliable Wireless Industrial Services Which Requirements? Future Scenarios*

AR/VR** for maintenance support

- Latency: 3-10 milliseconds (ms)
- Bandwidth, 0.1-2Gbps
- Data payload, over 4Kbytes

- Decentralised Shop-floorSpecific KPIs**
- Latency: 20-40 ms
- Transmit data size (bytes): 50, VBR**

**AR/VR: Augmented Reality/Virtual Reality

**KPI: Key performance indicator

**VBR: Variable Bit Rate

<u>*R. Sofia, M. Kovatsch, P. Mendes, Requirements for Reliable Wireless Industrial Services, draft-sofia-raw-industrialreq00</u>

Reliable Wireless Industrial Services Traffic Profiles, Our Recommendation

Profile	РСР	Delivery Guarantees	Period	Latency	Jitter	Payload (bytes)	Message type	Criticality level
Isochronous control	6	Deadline, latency, zero congestion loss, zero interference	< 2ms	< 50% of the period	Least possible	30-100	Fixed	High
Cyclic control	5	Latency, zero congestion loss	2-20ms	< 90% of the period	n.a.	50-1000	Fixed	High
Network control	7	Bandwidth, latency	50ms-1s	100ms	< period	50-500	Variable	High
Legacy control	4	Bandwidth		n.a.	n.a.		Variable	Medium
Event-based control and Alarms	3	Bounded latency	Acyclic	10ms- 50ms (up to 2s for alarms)	No issue	100-1500	Variable	High/Medium
Configuration and Diagnostics	2	Bandwidth, bounded latency	Acyclic	100ms		500-1500	Variable	Medium
Audio/Video	1	Bounded latency, bandwidth	Frame/ sample rate	< 40 ms	n.a.	1000-1500	Variable	Low
Best Effort	0	None	Acyclic	-	n.a	30-1500	Variable	Low

Demonstrator*: https://www.fortiss.org/en/research/projects/detail/tsnwifi

*Sugandh Mohan, Chitiphat C, B. Schneider, Devika Ajith, R. C. Sofia, Matthias Kovatsch. Experimenting with TSN and Wi-Fi 6. Under submission, 2021.

Time Synchronisation Aspects

- Time synchronisation via Fine Time Measurement (FTM) protocol (IEEE802.11AS-2020)
 - Experimental extensions for synchronising AP and wireless stations
 - Wireless region synchronised to PTP via FTM

Time-Aware Scheduling*

- Traffic Isolation
 - OFDMA Resource Unit Allocation
 - Provides isolation based on sub-frequencies
- Scheduling based on Target-Wake Time
- Integrates time-awareness to the wireless exchange
- Mimics TSN Time-aware Scheduling (TAS)

***B. Schneider, R. Sofia, M. Kovatsch**, A Discussion on Supporting Deterministic Behavior in Wireless Industrial Networks, 2021, under submission. **B. Schneider, R. C. Sofia, M. Kovatsch**, TAS-based Scheduling for Wireless/Wired TSN Environments, 2021, under submission.

Any questions?

fortiss GmbH Guerickestr. 25 80805 Munich GERMANY www.fortiss.org info@fortiss.org

18 28.05.2021 fortiss GmbH