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3Topics of Research Interest

• Smart city applications

• Blockchain for wireless networks

• Low-power wide area networks

• Information-centric wireless ad-hoc networks

• Unmanned aerial vehicle-assisted wireless networks

• Wireless sensor networks

• Body area sensor networks

• Cross-layer design

• Wireless communications
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https://cross-layer.com/


44
Agenda

• Introduction

• Background, motivation, and contributions

• Information-centric network-designed WSNs

• Unmanned aerial vehicle-assisted WSNs

• Proposed scheme

• Overview of the proposed scheme

• Utilization of Erase Code Technique

• Utilization of Dual-band SN Devices

• Proposed MAC Protocol

• Proposed PHY Protocol

• Computer simulation

• Conclusion



5Background

Cloud servers

Smart healthcare

Smart grid

Smart environmental
monitoring

Smart house
Smart car

UAV

Smart transportation

Example of future IoT services

• Smart cities bring intelligence to various aspects of our daily lives

for rapid urbanization.

• There are smart city application services, such as smart homes,

personal healthcare, and urban infrastructure management.

• Smart cities alternatively include urban sophistication and

resilience to serious disasters and the promotion of public

healthcare during global pandemics.

• Those promises have been recognized

as representative of the Internet of

Things (IoT).

• Those technologies feature a diverse

array of cyber-physical systems.
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• In realistic cities, to facilitate decision-making and task execution,

a massive number of resources, such as sensors, actuators, and

data storage, need to be deployed to retain the sustainability of

extensive social applications.

• The smart cities’ platform should be considered in practical data

management through all protocol layers.

• We introduce two key technologies into our proposed scheme to

realize an effective sensing data collection and management

scheme for Wireless Sensor Networks (WSNs) :

• An Information-Centric Network (ICN) design.

• A technique for assisted data collection of Unmanned Aerial

Vehicles (UAVs).

• UAV-assisted Information-Centric WSNs (UAV-IC-WSNs)
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• In conventional IoT frameworks, Sensor Nodes (SNs) are directly

linked to cloud servers to gather and centralize sensing data via

HTTP/TCP/IP-enabled application programming interfaces (APIs).

• Typical APIs architecture is reasonable for coordinating across

multiple systems.

Transition of IoT framework architecture

• The ICNs name content

data instead of the

“address.”

• ICN nodes copy and

store the named data

as caching data for

further responses.

• Heavy address-based queries cause serious

protocol overhead.
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• Another problem with the current systems:

• Practical SNs are non-uniformly scattered depending on the

ground surface, cost-effectiveness, and need to supply.

• The sensing data are periodically generated but must be collected

at asynchronous intervals.

• UAVs can work more flexibly

and robustly as mobile sink

nodes, which play an essential

role in air-ground integration

networks.

• UAVs:

For data collecting

and forwarding 

• Drones

• Small planes

• Balloons 
Overview of our target smart cities
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• We have found that our

scheme cannot be used in the
typical 4G/5G WSNs [3]

because of heavy data traffics.

• Remained technical issues:

• We should design a novel joint sensing, forwarding, and 

storing scheme for transmitter-side cooperation.

• As the first step, we introduce an erase code technique 

and cross-layer optimization into UAV-IC-WSNs.

• Sophisticated channel access at MAC protocol
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Contention-
based

IEEE 802.11-
based

CSMA/CA-
based

Cooperative 
MAC [5]

Receiver-side 
cooperation

Transmitter-side 
cooperation

Contention-
free

Hybrid

Category that surveyed in [4]

Classify of MAC protocols for UAV-WSNs

• Efficient radio bandwidth utilization at PHY protocol

• To solve the technical issues about channel capacity in 

UAV-IC-WSNs, we utilize dual-band SN devices.

Our sub-bullets



10Utilization of Erase Code Technique

• Named packets are encoded based on the erase code technique, i.e.,

full-frame is structured by appending the parity bits.

• According to introducing the erase code, the original packet can be

restored even if all the sub-frames are not complete.

• We can select ECC with Low-Density Parity-Check (LDPC) code and

the Reed-Solomon (RS) code since the packets with any lost sub-

frames have continuous bit errors in the sector of the lost sub-frames.

• Error Control Code (ECC)

is utilized to correct error

bits at the receiver side.

• ECC can also be used as

an erase code technique.

• Retransmission procedure is not necessary.

• We can try to recover the original packet by fetching the

lost sub-frames from the neighbor SNs.

Relationship between the named packet and frame, 

the structure of the full-frame and sub-frame



11Utilization of Dual-band SN Devices
• In the wireless air interface,

our system switches to two

radio frequency bands:

Relationship between the frame and time slot 

in two radio frequency bands

• Our scheme assigns the radio bands:

• Microwave band

• Sub-gigahertz band

• We utilize dual bands because we suspect the familiar Low-Power

Wide-Area (LPWA) networks, which typically use sub-gigahertz bands.

• LPWA will have difficulty wirelessly transmitting massive sensing

data in future WSN scenarios.

Higher frequency radio

leads to larger data capacity

and strong straightness.

• Microwave band SN - SN • Sub-gigahertz band SN-UAV
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Time slot in our MAC layer

• All nodes can be synchronized using

the pilot signal the UAVs broadcast.

• The MAC protocol is designed based

on the slotted-ALOHA scheme.

• 𝔸1’s data should be cached in not

only 𝔹1 but also in neighbor SNs.

• If 𝔸2’s data are sent at the same

time as 𝔸2’s, both the 𝔸1 and 𝔸2
will be interfered.

• 𝔹2 should be caching a part of

𝔸2’s data as the imperfect frame.

• The wireless communication system can overhear what neighbor

nodes can receive whether they desire it or not.

• For accelerating an advantage of caching scheme, the nodes should

actively accumulate the overheard data (an off-path caching scheme).

Procedure of our packet forwarding scheme
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Procedure of our packet forwarding scheme

• To select the dual-band SN, the

UAVs give a transmission request

• The UAV broadcasts the interest

packets to the area where the

desired data might be located.

• If one node responds to the request, the UAV can decide on it.

• If there are several candidate SNs, the UAV can decide on the SN with

the best wireless condition among dual-band SNs with perfect frame.

• If the candidate SNs have only imperfect data, the UAV tries to

combine and restore the data

• We assume that UAV and SNs are one hop through a direct link, but

multiple hops are acceptable, which is part of our future work.

• 𝕌1 selects 𝔹1.

• 𝕌2 selects 𝔹3 among 𝔹3, 𝔹4, and 𝔹5.

• 𝕌3 selects and recovers both 𝔹6 and 𝔹7. 
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• At the transmitter:
Procedure of wireless communication system

• At the pilot signal regenerator

• Full-frame is constructed at the erase code encoder by appending

the parity bits that are calculated based on the named packet

• Full-frame is divided into several sub-frames at the fragmentor.

• Each sub-frame is encoded using ECC (that is the convolutional

code) for error detection and correction through wireless links.

• The codewords are mapped into the analog signals using the

modulator, such as the binary phase shift keying method.

• The synchronization signals

can be restored from the

UAVs in order to utilize the

slotted-ALOHA scheme.
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• At the receiver:

Procedure of wireless communication system

• The erase code decoder tries to recover the original packet.

• If the restoring process is completed, the recovered packet is

stacked in the cache memory for the perfectly named packet

• Otherwise, the failed packet is stacked in another cache memory for

the imperfectly named packet.

• The received signal is decoding

using the Viterbi decoding

algorithm.

• The correctly received sub-

frames are stacked into a

temporary buffer.

• The packets stored in those cache memories could be re-transmitted

when the cooperative packet/frame transmissions are requested by

other SNs and when the request is accepted.



16Computer Simulation

Terms Values

Erase code
LDPC with

sum-products decoding

Trans. Interval 600 s (= 10 min.)

Multiple access Slotted-ALOHA

Number of channels 15

Full-frame length 64,800 bit

Number of 

fragmentations
60

Modulation method BPSK

Error control coding Convolutional coding

Radio

Frequency

2.4 GHz (in microwave),

920 MHz (in sub-GHz)

Channel model Rayleigh fading

Radio propagation

model

Erceg’s model (SN-BS),

Amorim’s model (SN-UAV)

Transmission power 0 dBm

Antenna gain 0 dBi

Circuit loss 0 dB

Thermal noise −172 dBm

Simulation parameters
• Our initial evaluation:

• Erase code technique’s

capability

• Frame reachability via

wireless channels

• Improvement in data

caching among SNs

• The LDPC code’s parity-

check matrix is decided

based on the DVB-S2

specifications.

• We ignore the limitation of

cache memory and

selecting the buffered data.

• In Erceg’s model and Amorim’s model, the fading and shadowing are

considered, unlike with the theoretical free-space model.



17Numerical Results
• Robustness of the LDPC-based erase

code, when the code rate 𝑅 is given, the

original packet can be recovered:

• LDPC code has strong resilience to burst

errors, but it requires a long codeword to

guarantee sufficient error correction.

• When the percentage of lost subframes is small, the curve keeps a

flat shape because enough sub-frames are received.

• The recovery rate suddenly degraded because the received data is

digitally decoded.

R 1/4 1/3 1/2 2/3

Number of lost 

sub-frames
11 7 3 2

We need to overcome this barrier

for short sensing data message.

There is no resistance to noise as same as an analog system.
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• The number of iterations is 10 times or less when the packet is

successfully restored.

• Even if the number of iterative operations exceeded 50 times, no

improvement occurred.

• The curve keeps a flat shape when the number of iterations exceeds

50 times because of reaching the upper limit.

• At the receiver side, the LDPC code

decoder fulfills an iterative operation.

• Figure (b) shows the average number of

iterations until a successful recovery.

Sum-products algorithm

• Computational burden increases

depending on increased iterations.
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• Figure (c) shows the frame reception probability versus the distance

between nodes.

Figures (a)–(c) demonstrate the effectiveness

of our scheme for packet caching

• Erceg’s model and Amorim’s model describe smooth curves.

• Amorim’s model did not appear to be a difference between

radio frequency bands.
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• Figure (d) indicates that our scheme can work under the 5G scenario

by using the proposed MAC and physical protocols.

• Proposed scheme improved data caching capability by 29.3% in

comparison with a comparable scheme without introducing an erase

code mechanism.

• We need further analysis in our future work.

• In general, number of SN deployments:

• 10,000/km2 (in the 4G scenario)

• 1,000,000/km2 (in the 5G scenario)

• 10,000,000/km2 (in the Beyond 5G (B5G))

• LPWA systems achieved high reachability

in the 4G scenario; however, it does not

work under 5G and B5G scenarios.



21

• Contribution:
• We proposed a novel erase code-enabled data caching scheme 

for UAV-IC-WSNs to achieve joint sensing, forwarding, and 
storing. 

• We provided the overall blueprint of our proposal and a initial 
evaluation. 

• We reveal its fundamental features using computer simulation.

• Future work:
• Feasibility for realistic environment using comprehensive 

simulations and hardware-based experiments.

• Comparison with other schemes.

• We will expand on the B5G scenarios and analyze them in 
practical environments. 

• It is necessary to discuss the disadvantages of dual-band SNs 
compared to single-band SNs in terms of power consumption 
and implementation cost.

• … many works are remained.

Conclusion
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