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Quantum Computing
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A Quantum computer will operate differently from a Classical one.
It will be involved w physical systems on an atomic scale,
eg atoms, photons, trapped ions, or nuclear magnetic moments

Quantum Gate

Unitary Reversible

Entanglement with Quantum Environment produces Decoherence



Machine Autonomy

Autonomous machines are capable of performing tasks

in the world by themselves, without explicit human control.

Examples range from autonomous helicopters to

Roomba, the robot vacuum cleaner.

…. George Bekey, Autonomous Robots:

From Biological Inspiration to Implementation and Control,

MIT Press, 2005

My brain is a
Neural Net
Processor



Myths

The Seven Deadly Myths of “Autonomous Systems”
Jeffrey M. Bradshaw, Robert R. Hoffman, Matthew Johnson,

and David D. Woods,IEEE Intelligent Systems, May-June 2013

Myth 1: “Autonomy” is unidimensional

Myth 2: The conceptualization of “levels of autonomy” is a useful

scientific grounding for the development of autonomous system

roadmaps.

Myth 3: Autonomy is a widget

Myth 4: Autonomous systems are autonomous.

Myth 5: Once achieved, full autonomy obviates the need for human-machine collaboration.

Myth 6: As machines acquire more autonomy, they will work as simple substitutes (or
multipliers) of human capability.

Myth 7: “Full autonomy” is not only possible, but is always desirable.

Self-sufficiency
High

Low

Under-
reliance

Burden

Not well
understood

Over-trust

High

Autonomous Systems: Make Decisions and Operate Independent
of Any Human Interference or Effect



Self Driving Vehicles
More Likely



Semi-Autonomous Systems

Human-Machine
Collaborations



Human-Machine BarriersWhy Cant
Humans

Follow the
Program



Experienced
Human Operator

Semi-Autonomous
System

Questions?

Decisions

Disaster
Ahead

(maybe)

Human-CyberSystem Interaction

Human Decision Making
Responds to Context &
Is Effected by the Order

or Sequence of Decisions

Cyber-Systems are Turing
Machines (Algorithms)



Quantum Analysis of Cognition
&Decision-Making

1. The Quantum Probability Approach to
Human Cognition and Decision- Making is like

the Statistical Mechanics approach to Thermodynamics

2. Provides analytical probabilistic understanding to complement time series
analysis & data mining based on neural nets and machine learning

3. Uses Special Properties of Quantum Information Systems,
e.g. non-commuting probability, entangled bases

4. Benefit: Simulation via Quantum Computing & Computers ??



Introduction
• Achieving full autonomy in cyber-systems is extremely complex and difficult, and very unlikely to

be acceptable for reasons that are related to human endeavor and safety. Humans must continue to
interact with computer-controlled systems. The only viable system autonomy systems
will be one that supports teaming based on a careful foundation of research on
human–automation interaction.

• To that end, Verification & Validation for such teamed human computer systems
must be able to model to a reasonable extent the human cognitive effects of well-
trained operators in decision-making with high performance cyber-systems. Such
modeling efforts will never exactly reproduce human cognition in all its variegated complexity, but
will model a reasonable likeness that can be usd to predict and improve human-machine
performance.

• The mathematics necessary for such a modeling effort is not classical probability. Quantum
probability and quantum statistical mechanics is more adept at capturing
the unique attributes of human cognition including recognition of context
and sequential decision-making. It is well-known that humans recognize and respond
fully to these attributes. And the mathematics at the heart of quantum mechanics is indeed able to
capture and reproduce these dynamic attributes. However, this is a new aspect of system modeling
and most certainly of the V&V of such human-machine systems.



Further

• The fundamental element of quantum statistical mechanics is the quantum density operator.
Once determined this operator reveals the statistics of observables in a quantum process which
can represent and model human decision-making. As part of this introductory talk we will
present some of our research on the estimation and approximation of the quantum density
operator from the Liouville-Von Neumann master equation.

• It is critical to retain all the properties of quantum operators during approximation and
estimation; so that at any stopping point during the estimation process the result will be a true
quantum density operator. The set S of all quantum density operators on the Hilbert space of
trace class operators contains all self-adjoint positive semidefinite operators with trace one.
This set is contained inside the unit ball and is a closed convex set.

• Once the density operator is known/adequately estimated , the Quantum Statistical Mechanics
properties of the Cognition model can be calculated. And recommendatios and predictions
can be made about the Human-Machine Interaction.



Classical Probability Theory

1
1

Event Space:

-algebra of subsets of

Probability of event ( ) : 0 ( ) 1,

( ) 1,& ( ) 0,& ( ) ( ) when disjointi i i i
i

X

X

A p A p A

p X p p A p A A











  

   

Bayes Theorem : ( | ) ( ) ( ) ( ) ( | ) ( )

Commutes

p A B p B p A B p B A p B A p A    


Andrei Kolmogorov



Quantum Probability Theory
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Order Effects: Sequenced Decisions
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Quantum Measurement
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“…for when you
gaze long into
the abyss. The
abyss gazes
also into you.”



Quantum Statistical Mechanics

*

Quantum Density Operators :

(These carry all the quantum probability information &are now thought of as quantum states

Defining Properties: (self-adjoint); 0(pos semi-def); 1
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The Set of All Quantum Density Operators
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Quantum Dynamical System
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Quantum Master Equation

Ensemble Averages; Quantum Measurements:
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What is Needed NOW? A Basic Online Linear Estimator
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Projection Operator for Closed Convex Sets in Hilbert Space
Hilbert Space with closed, convex .

: :
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Modified Quantum Estimator
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Adaptive Quantum State Estimation in Hilbert Space
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What Is Needed Later:

Continuous Quantum
Measurement
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What’s The Point ?
We need a better understanding and ability
to make reasonable
Models of the dynamic behavior of human operators
interacting with semi-autonomous cyber-systems.

We think quantum probability theory
And Quantum Statistical Mechanics is a
fundamental place to start.



Our
Quantum Statistical

Mechanics
And Human Cognition

Research Group


