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Quantum Computing

A Quantum computer will operate differently from a Classical one.
It will be involved w physical systems on an atomic scale,
eg atoms, photons, trapped 1ons, or nuclear magnetic moments

Unitary ‘ Reversible

Entanglement with Quantum Environment produces Decoherence



My brain is a

MaChlne AUtOnOmv Neural Net

Processor

Autonomous machines are capable of performing tasks

in the world by themselves, without explicit human control.

Examples range from autonomous helicopters to

Roomba, the robot vacuum cleaner.

.... George Bekey, Autonomous Robots:

From Biological Inspiration to Implementation and Control,

MIT Press, 2005 TERMINATOR 2
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Autonomous Systems: Make Decisions and Operate Independent
of Any Human Interference or Effect
Myths

The Seven Deadly Myths of “Autonomous Systems” "%

Jeffrey M. Bradshaw, Robert R. Hoffman, Matthew Johnson, Not well

Over-trust
and David D. Woods, |EEE Intelligent Systems, May-June 2013 understood

. o geo . Under-
Myth 1: “Autonomy” is unidimensional Burden reliance

Myth 2: The conceptualization of “levels of autonomy” is a useful Low

Self-sufficiency

= High

scientific grounding for the development of autonomous system
roadmaps.

Myth 3: Autonomy is a widget

Myth 4: Autonomous systems are autonomous.

Myth 5: Once achieved, full autonomy obviates the need for human-machine collaboration.

Myth 6: As machines acquire more autonomy, they will work as simple substitutes (or
multipliers) of human capability.

Myth 7: “Full autonomy” is not only possible, but is always desirable.




Selt Driving Vehicles

More Likely
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Human-Machine
Collaborations




Why Cant Human-Machine Barriers

Humans
Follow the
Program



Disaster
Ahead
(maybe)

Semi-Autonomous
Decisions System

Human Decision Making
Responds to Context & . )
Is Effected by the Order Machines (Algorithms)

or Sequence of Decisions

Cyber-Systems are Turing




Quantum Analysis of Cognition
&Decision-Making

1. The Quantum Probability Approach to
Human Cognition and Decision- Making is like
the Statistical Mechanics approach to Thermodynamics

2. Provides analytical probabilistic understanding to complement time series
analysis & data mining based on neural nets and machine learning

3. Uses Special Properties of Quantum Information Systems,
e.g. non-commuting probability, entangled bases

4. Benefit: Simulation via Quantum Computing & Computers ??



Introduction

« Achieving full autonomy in cyber-systems is extremely complex and difficult, and very unlikely to
be acceptable for reasons that are related to human endeavor and safety. Humans must continue to

interact with computer-controlled systems. The only viable system autonomy systems
will be one that supports teaming based on a careful foundation of research on
human—automation interaction.

To that end, Verification & Validation for such teamed human computer systems
must be able to model to a reasonable extent the human cognitive effects of well-

trained operators in decision-making with high performance cyber-systems. Such
modeling efforts will never exactlx reproduce human cognition in all its variegated complexity, but
WI|!¢ model areasonable likeness that can be usd to predict and improve human-machine
performance.

The mathematics necessary for such a modeling effort is not classical probability. Quantuim
robability and quantum statistical mechanics is more adept at  capturing
he uniqueé attributes of human cognition including recognition of context

and sequential decision-making. It iswell-known that humans recognize and respond
fully to these attributes. And the mathematics at the heart of guantum mechanics isindeed able to
capture and reproduce these dynamic attributes. However, thisis a new aspect of system modeling
and most certainly of the V&V of such human-machine systems.



Further

* The fundamenta element of quantum statistical mechanics is the quantum density operator.
Once determined this operator reveals the statistics of observablesin a guantum process which
can represent and model human decision-making. As part of this introductory talk we will
present some of our research on the estimation and approximation of the quantum density
operator from the Liouville-Von Neumann master eguation.

o [tiscritical toretain al the properties of quantum operators during approximation and
estimation; so that at any stopplsrgt; gm nt during the estimation process the result will be atrue
guantum density operator. The of al guantum density operators on the Hilbert space of
trace class operators contains all self-adjoint positive semidefinite operators with trace one.
This set is contained inside the unit ball ‘and is a closed convex set.

» Once the density operator is known/adequately estimated , the Quantum Statistical Mechanics
properties of the Cognition model can be calculated. And recommendatios and predictions
can be made about the Human-Machine Interaction.



Classical Probability Theory

Event SpEK:e: X Anrei Kolmogorov
Q) o-agebraof subsets of X
Probability of event A= p(A):0< p(A) <1,

p(X)=1&p(®)=0,& p(U7,A)=" p(A) when A digoint

Bayes Theorem: p(A| B) p(B) = p(ANB) - p(BNA) =p(B[A) p(A)

Commutes




Quantum Probability Theory

Event Space: X isaHilbert Space

(Herel ", but usualy infinite-dimensiona ) Paul Dira John Von Neumann
(X,y) = X'y inner product & norm |X|=/(x, X)

{qbk}::':l orthonormal basisfor X : (4, ,¢) = 5, Quantum
State

X = ZN: @.X) ¢ "Mixed Decision Quantum State" HxH2 = i‘(¢k , x)\2 =1
k=1 o k-1

"pure decision state”

QuantumProbability (x collapsesinto sp{g,}) = \(qﬁk,x)\z = HPKH2 where P, = (¢, , )¢,
Observables: H (sdlf adjoint H™ = H)

Dynamics: | % (=1 %) = Hx , Schrodinger Wave Equation




Quantum Spin Example: Qubit
2
X=0"= Sp{¢11¢2}

Let the Hamiltonian be

101

o 3fle-3l:

1 -l
HEGO+0661=|: 1 };a real

QUANTUM MECHANICS PARTICLE PRACTICAL JOKE

BURICKY HERE COMES THE PHYSICIST! I onn. AT CODLowe

s 153,11

X(t) =€ (g, %)+ e (4, %)6,
solves the Schrodinger equation (72 =1): | ax_ HX; X(0) = X,

| cos(at) |

t)==¢e" h =
= X(t)==e sin(at) when X,

dt

and [x()] = ] =1



Order Effects: Sequenced Decisions

X ={d,, ds} Qubit
Orthogonal Projections: P = ¢,¢, & P, = %(% + @) (P + P5)

Let ¢ = ¢, :

p((2|1)¢) = |P,Pg| = P2¢AM ~ 0

& P((12)8) =[PP = [P 28+ 6a)(Ba + 40

1

1 1L, 2 1, > 1,
=[RS @+ 8e)(O+ D) = (D) [6a90(8n+d0)| = (D)7 6a @+ O = ()" =

4
= p((2]1)¢) # p((1]2)¢)

(Note Projections do not commute: PP, # P,R,)



Quantum Measurement

“...for whenyou & ' Entanglement L

aze long into
8 8 X =X ®X,,

Nietzchel!l
Never around
when you
need him

abyss gazes
also into you.”

—_

4

the abyss. The
¢ :Zakl (4 ®¢")=hOw
K,

<

Back
Action
bounded

Observable A: X —=9% 5 X Hilbert Heisenberg Uncertainty Principle

Mean (A)=Tr(pA)

Dispersion 44 = \/Tr (p(A=(A)?)

Helsenberg Uncertainty Principle : Simultaneous Measurement of A& B

; commutator [ A, B] = AB— BA
16

(AA)?(AB)? > %\Tr(p[ A B])

where p is a state or density operator (p >0& Tr(p) =1




Quantum Statistical Mechanics

Quantum Density Operators: p €[] ™"

(These carry all the guantum probability information & are now thought of as quantum states
Defining Properties; p” = p(sdf-adjoint); p > O(pos semi-def);trp =1

N
Mixed Statep=> " pR.;
k=1

Pure State: P, = (%k 0P = ¢k¢I:

Dynamics:%—f =—I[H, p]=-1(Hp - pH) ,Quantum Master Equation

L

Ensemble Averages, Quantum M easurements:
y=(C)=1r(Cp)




The Set of All Quantum Density Operators

S={pecl™|p =p;p20itrp=2Ltrp* <t c UnitBall in ™"

Theorem: Sisaclosed, convex subset of 1 ™, & S is bounded (S < Unit Ball),
where

S closed means: V{ p,} = S& p, ——
S convex means. Vp,, p, € S, thestraight line Ap, + (1-1)p, € S

>0 => pES




Quantum Dynamical System

(dp . . -
_— H’ = — H — H :—L y
Dvnarics: | d I[H,p]=-1(Hp-pH)=-ILp

| p(0)=p, (unknown) y(t)

po =P Quantum Master Equation >

Ensemble Averages, Quantum Measurements.
y=(C)=tr(Cp)

Note: Sisan invariant set: p(0) e S= p(t) eSSVt >0
"Once a guantum density, always a guantum density"

The available
Outputs here are
the data from an

ensemble of

experiments




What is Needed NOW7 A Basic Online Linear Estimator

wj:% Available

- Data

Quantum Density System

8—p=—in;LE[H,p]

{at

y=trCp; p(0) = p,

Linear Quantum Density Estimator

PO =P e BT
—-=-iLp+K(y=9)
M) —=—-0 §=Cp; p(0) = p,

with exponential rate




Projection Operator for Closed Convex Sets in Hilbert Space
X Hilbert Space with S closed, convex < X.
P.: X —>S:
P.x isthe (metric) Projection of x onto S when

vxe X |x—Px|=d(x,S)=min

x—2]

zeS

Properties of the Projection
1) P,(x) isdefined Vx e X
2)P,(X) =X Xe S
3)P.* = P,(idempotent)
X =P x<= Re(X—X.,z-X) <0Vze S ("Principle of Orthogonality, sorta’)

e ——
Error

5) P, is Lipschitz Continuous,i.e|Psx—Py| <[x-y| vx,yeX
But P, is NOT Linear.




Modified Quantum Estimator

Quantum Density System

{ap
y=trCp; p(0) = p,

Nonlinear Projection Operator Linear Quantum Density Estimator

p(t) = Pgp(t)

p(t) = p(t) + &)

=—iLp+ K(y—}¥
= p+K(y-y)

Using the Lipschitz continuity of P :

Y =Cp;p(0) = p,

<

=[le®)]

CIOREIGIE

Pso(t) - Fsp®)|| < || p(1) — p(t)
p(t)eS e(t)

where e(t) ————> 0 with exponential rate set by the origina Linear Estimator

And ,S(t) = P,p(t) remainsin S Vvt ( and is a Quantum Density) even tho p(t) does not
and it convergesto p(t) e S




What Is Needed Later: Adaptive Quantum State Estimation in Hilbert Space

Full Quantum System

iha_pz Lo+ H iwaap + BU
at Y= ——

External
Quantum Input
Disturbances

y-tr(Cp) Poorly Known
Input &
Hamiltonian
Projection Operator
P P

Adaptive Quantum State Estimator

p(t) = Pgp(t)

., 0p n . A n
Iha_/tjz me + K(y_ y)+ B(U +Gadaptivep)

y=tr(Cp), & p(t)e S Vt>0

And f)(t) = P,p(t) remainsin S Vvt (and is a Quantum Density) even tho p(t) does not
and it convergesto p(t) e S 93




What’s The Point ?

We need a better understanding and ability

to make reasonable

Models of the dynamic behavior of human operators
interacting with semi-autonomous cyber-systems.

We think quantum probability theory
And Quantum Statistical Mechanics is a
fundamental place to start.




Our
Quantum Statistical
Mechanics
And Human Cognition
Research Group




