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Research Focus :

o Frequency and voltage dynamics in high voltage power
transmission and distribution networks.

e Control devices for power system oscillations.
—> http://condynet.de/veroeffentlichungen.html
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Introduction : Power Systems Dynamics

Introductic

Power Systems

This means that

the primary, secondary and tertiary control schemes of a grid
frequency depend on the active power control of the controller.

But two questions arise due to disturbed operations :

o How much of P are the generators willing to momentarily
supply or absorb through their droop functions for rapid
frequency control response ?

o How does these few nodal injected chunks of active power
(P) ensure a balanced synchronous frequency ?

—> to answer these questions, Let us observe how signals move
across the network through the equation of motion.
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Introduction : Power S ms Dynamics

Swing equa

which describes the torque balance between the turbine’s mechanical torque T3

and the electromagnetic torque T, given as !> 2:3
dw®
T+ Dy,w® =Ty — Te — Dy,wo, (1)

where J; = QTI?S“ D, is the rotational loss due to generator rotor windings, and
0

w? is the angular velocity of the rotor. With rotor’s angular position §, the swing

equation can then be re-written in many forms as*

d2s; dd;
Mi dt2 Dz(E) 7P’"L_P€7 (2)
2H; , d26; ds; REN
o S; e + D; 7t =P + ; Wij SlIl((Sj — 51) (3)

where rotor’s M; = J;wo = ZTI?SZ-, D; = Dy;wo and Wj; is the power capacity.

. KunDUR,Power System Stability and Control, 1994
. MacHowskKl, BIALEK et BumBY,Power System Dynamics : Stability and Control, 2008

. SALLAM et MALIK,Power System Stability : Modelling, Analysis and Control, 2015

N

. MAaNIK et al.,“Network Susceptibilities : Theory and Applications”, 2017
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Introduction :
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—> What happened to generator transient dynamic controllers (i.e., machine’s
AVR, TGOV, PSS, Uel, Oel), voltage equations, transient, subtransient and
stationary reactances of the rotor windings, etc. ?

DigSILENT PowerFactory

—> A power simulation and application software

—> Modelling with higher (5*") order machine equations.

—> Considers higher order voltage equations, transient reactance, etc.
—> Modelling machine’s controllers according to IEEE Guides

—> Considers inhomogeneous distribution of inertia, etc.
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Nigerian 3

Summary of the grid
—> 107 less decommissioned power units of generators.
—> 71 overhead transmission lines with 1.32 kA limiting current

and 13,208 MW power capacity as of 2020.
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Numerical Experiments

Numerical

Dynamics of

Frequency as a function of time at contingency. Frequency Time of Arrival (ToA)
is defined as the time when the frequency deviation first reaches a small
threshhold of jv = 0.002 Hz.
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Numerical Experiments

Numerical

Dynamics of Mo

Here, we choose 11 buses for the investigation;

—> The fault location is bus 24 with Hagg as the aggregated inertia constant.
—> Two buses at the same geodesic distance, r = 2 from fault location with no
inertia (i.e., buses 8 and 10) and three buses with inertia (i.e., buses 22, 55, and
57).

—> four buses at the same r = 7 (i.e., buses 7 and 30 with no inertia) and with
inertia (i.e., buses 3, 28, and 69) 5.

Case studies

Case 1 : Large disturbance, no reserve at fault location given Hagg = 2s.
Case 2 : Large disturbance, large reserve at fault location given Hagg = 2s.
Case 3 : Large disturbance, large reserve at fault location given Hagg = 6s.

: Large disturbance, large reserve at fault location and an increased reserve
at bus 22 given Hagg = 2s.
Case 5 : Large disturbance, large reserve at fault location with a newly installed
reserve at bus 7 given Hagg = 2s.

5. K.P. Nnor! AND S. KETTEMANN,“Spreading of Disturbances in Realistic Models of
Transmission Grids : Dependence on Topology, Inertia and Heterogeneity”, 2021
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vations

—> Disturbance arrived at Fault Location (FL, i.e., bus 24) first, delayed for buses
at r = 2 and with further delays for buses farther away.

—> Frequency ToA increased in Case 2 due to Momentary Reserve (MR) at FL.
—> Means that MR delays the disturbance as it propagates.

—> Increasing the grid inertia causes further delay in ToA (i.e., more damping).

—> Further improvement of MR at other nodes did not improve the ToA from
Case 2.
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Bus 7 Bus 57

—> Minima; decreased in Case 2 from Case 1. This indicates oscillations damping.
—> MR at FL decreases the time of frequency dip (Minima;) than at any other bus
—> Increasing the grid inertia causes further delay in the Minimay

—> Further increment in the MR at other locations improved the delay in
Minimag.
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Minima Ma

Findings :

—> Without MR at fault location, the average Minimamag is greatly impacted in

Case 1.
—> Introduction of inertia and MR at FL improved the frequency dip from Case 1
to Case 2.

—> Increasing the grid inertia alone does not have any improved impact on the
magnitde of the frequency dip.

—> Further increment in the MR at other locations did not indicate further
improvement in Minimamag.
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vations

Bus 7 Bus 57

—>Increasing the nodal MR at the FL decreases the frequency FS; at the nodes.
—> Increment of MR at other location other than the FL further causes an
increased FS¢.

—> Increasing the grid inertia causes further delay in the frequency FS;.

—> Increasing MR at a location with a bus degree of 7 farther away from the FL
decreases the FS;.
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Deviation

Bus 7 Bus 57

Findings :
—> Increasing the MR at the fault location greatly decreases the Devimag.
—> Further increment in MR at other locations does not show improvement.

Summary of Findings

—>increase in nodal MR delays the travel and arrival of disturbances.
—> MR improves frequency dip and reduces its FS;.
—> Optimal placement of momentary reserve is at the point of contingency.
—> Increase in Hagg without increase in reserve does not improve Devimag.
—> Increasing MR reduces the need for primary and secondary control power.
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