

Kosisochukwu Pal Nnoli and Stefan Kettemann

School of Engineering and Science, Jacobs University, 28759 Bremen, Germany. email: k.nnoli@jacobs-university.de

May  $30^{\text{th}}$  - June  $3^{\text{rd}}$ , 2021.

< □ ト < 同 ト < 三 ト <

# Brief

- B.Eng. in Electronic and Computer Engineering from Nnamdi Azikiwe University, Awka, Nigeria.
- M.Sc. in Electrical Engineering (Power) from Universität Rostock, Germany.
- Ph.D. in view from Jacobs University Bremen under the supervision of *Prof. Dr. Stefan Kettemann*
- Licensed Professional Engineer with COREN Nigeria.
- Worked with Redington Gulf, PHCN, MTN Nigeria, IHS Africa, MP-Infrastructure Limited, as Field Engineer.

#### Research Focus :

- Frequency and voltage dynamics in high voltage power transmission and distribution networks.
- Control devices for power system oscillations.
  -> http://condynet.de/veroeffentlichungen.html

2.4

## Introduction

Power Systems Dynamics



æ

# Introduction

Power Systems Dynamics

#### This means that

the primary, secondary and tertiary control schemes of a grid frequency depend on the active power control of the controller.

But two questions arise due to disturbed operations :

- How much of *P* are the generators willing to momentarily supply or absorb through their droop functions for rapid frequency control response?
- How does these few nodal injected chunks of active power (P) ensure a balanced synchronous frequency?

-> to answer these questions, Let us observe how signals move across the network through the equation of motion.

### Swing equation of motion

which describes the torque balance between the turbine's mechanical torque  $T_t$  and the electromagnetic torque  $T_e$  given as <sup>1, 2, 3</sup>

$$J_i \frac{d\omega_i^{\Theta}}{dt} + D_{r_i} \omega_i^{\Theta} = T_t - T_e - D_{r_i} \omega_0, \qquad (1)$$

where  $J_i = \frac{2H_i}{\omega_0^2} S_i$ ,  $D_{r_i}$  is the rotational loss due to generator rotor windings, and  $\omega_i^{\Theta}$  is the angular velocity of the rotor. With rotor's angular position  $\delta$ , the swing equation can then be re-written in many forms as <sup>4</sup>

$$M_i \frac{d^2 \delta_i}{dt^2} + D_i \left(\frac{d\delta_i}{dt}\right) = P_m - P_e, \qquad (2)$$

$$\frac{2H_i}{\omega_o}S_i\frac{d^2\delta_i}{dt^2} + D_i\frac{d\delta_i}{dt} = P_i + \sum_{j=1}^{N_S}W_{ij}\sin(\delta_j - \delta_i)$$
(3)

where rotor's  $M_i = J_i \omega_0 = \frac{2H_i}{\omega_0} S_i$ ,  $D_i = D_{r_i} \omega_0$  and  $W_{ij}$  is the power capacity.

- 1. Kundur, Power System Stability and Control, 1994
- 2. MACHOWSKI, BIALEK et BUMBY, Power System Dynamics : Stability and Control, 2008
- 3. SALLAM et MALIK, Power System Stability : Modelling, Analysis and Control, 2015
- 4. MANIK et al., "Network Susceptibilities : Theory and Applications", 2017 ( ) + () + ()

### Reserves and Introduction to PowerFactory



-> What happened to generator transient dynamic controllers (i.e., machine's AVR, TGOV, PSS, Uel, Oel), voltage equations, transient, subtransient and stationary reactances of the rotor windings, etc.?

#### DigSILENT PowerFactory

- -> A power simulation and application software
- -> Modelling with higher (5<sup>th</sup>) order machine equations.
- -> Considers higher order voltage equations, transient reactance, etc.
- -> Modelling machine's controllers according to IEEE Guides
- -> Considers inhomogeneous distribution of inertia, etc.

# Nigerian 330 kV Transmission Power Network

#### Summary of the grid

- $-\!>107$  less decommissioned power units of generators.
- ->71 overhead transmission lines with 1.32 kA limiting current and 13, 208MW power capacity as of 2020.



# Numerical Experiments in PowerFactory

**Dynamics of Momentary Reserves** 

Frequency as a function of time at contingency. Frequency Time of Arrival (ToA) is defined as the time when the frequency deviation first reaches a small threshold of  $\delta \nu = 0.002$  Hz.



3

## Numerical Experiments in PowerFactory

Dynamics of Momentary Reserves

Here, we choose 11 buses for the investigation;

-> The fault location is bus 24 with  $H_{\text{agg}}$  as the aggregated inertia constant.

-> Two buses at the same geodesic distance, r = 2 from fault location with no inertia (i.e., buses 8 and 10) and three buses with inertia (i.e., buses 22, 55, and 57).

-> four buses at the same r = 7 (i.e., buses 7 and 30 with no inertia) and with inertia (i.e., buses 3, 28, and 69)<sup>5</sup>.

#### Case studies

Case 1 : Large disturbance, no reserve at fault location given  $H_{agg} = 2s$ . Case 2 : Large disturbance, large reserve at fault location given  $H_{agg} = 2s$ . Case 3 : Large disturbance, large reserve at fault location given  $H_{agg} = 6s$ . Case 4 : Large disturbance, large reserve at fault location and an increased reserve at bus 22 given  $H_{agg} = 2s$ . Case 5 : Large disturbance, large reserve at fault location with a newly installed reserve at bus 7 given  $H_{agg} = 2s$ .

<sup>5.</sup> K.P. NNOLI AND S. KETTEMANN, "Spreading of Disturbances in Realistic Models of Transmission Grids : Dependence on Topology, Inertia and Heterogeneity", 2021 + 4 = 3

# ToA Observations



#### Findings :

-> Disturbance arrived at Fault Location (FL, i.e., bus 24) first, delayed for buses at r = 2 and with further delays for buses farther away.

-> Frequency ToA increased in Case 2 due to Momentary Reserve (MR) at FL.

-> Means that MR delays the disturbance as it propagates.

-> Increasing the grid inertia causes further delay in ToA (i.e., more damping).

-> Further improvement of MR at other nodes did not improve the ToA from Case 2.

## Minima time ( $Minima_t$ ) Observations



#### Findings :

- -> Minimat decreased in Case 2 from Case 1. This indicates oscillations damping.
- -> MR at FL decreases the time of frequency dip (Minima<sub>t</sub>) than at any other bus
- -> Increasing the grid inertia causes further delay in the Minima<sub>t</sub>
- -> Further increment in the MR at other locations improved the delay in  $\mathrm{Minima}_t.$

イロト イポト イヨト イヨト

# Minima Magnitude (Minima<sub>mag</sub>) Observations



#### Findings :

-> Without MR at fault location, the average Minima<sub>mag</sub> is greatly impacted in Case 1.

-> Introduction of inertia and MR at FL improved the frequency dip from Case 1 to Case 2.

 $-\!>$  Increasing the grid inertia alone does not have any improved impact on the magnitude of the frequency dip.

-> Further increment in the MR at other locations did not indicate further improvement in Minima<sub>mag</sub>.

K. P. Nnoli and S. Kettemann Dyna

Dynamics of Momentary Reserves 1

12/15

# Final Settling time $(FS_t)$ Observations



#### Findings :

->Increasing the nodal MR at the FL decreases the frequency FS<sub>t</sub> at the nodes. -> Increment of MR at other location other than the FL further causes an increased FS<sub>t</sub>.

-> Increasing the grid inertia causes further delay in the frequency  $FS_t$ .

-> Increasing MR at a location with a bus degree of 7 farther away from the FL decreases the  $\mathrm{FS}_t.$ 

# Deviation Magnitude (Dev<sub>mag</sub>) Observations



#### Findings :

- -> Increasing the MR at the fault location greatly decreases the Dev<sub>mag</sub>.
- -> Further increment in MR at other locations does not show improvement.

#### Summary of Findings

- ->increase in nodal MR delays the travel and arrival of disturbances.
- -> MR improves frequency dip and reduces its FS<sub>t</sub>.
- -> Optimal placement of momentary reserve is at the point of contingency.
- -> Increase in  $H_{agg}$  without increase in reserve does not improve  $\text{Dev}_{mag}$ .
- -> Increasing MR reduces the need for primary and secondary control power.

#### THANK YOU FOR LISTENING !!!



-> http://condynet.de/veroeffentlichungen.html

-> https://www.jacobs-university.de/