Scaling and spatio-temporal properties of power-grid frequency: An open database

Special Track: Modelling Dynamics of Power Grids

DLR Institute of Networked Energy Systems

Forschungszentrum Jülich - IEK-STE Institute of Energy and Climate Research Systems Analysis and Technology Evaluation

Karlsruhe Institute of Technology Institute for Automation and Applied Informatics

Knowledge for Tomorrow

Power-grid frequency: The common indicator for stability

Power-grid frequency is the key indicator of stability in power-grid systems. It comprises the balance between generation and consumption, but much more is encoded in its physics. In this presentation we will investigate:

- The nature of power-grid fluctuation.
- A scaling law relating inertia/generation and fluctuation amplitude.
- The finer structure of power-grid frequency fluctuations in real-world recordings.

Extant power-grid frequency recordings Excerpts February 2019

Three recordings from 11th of February 2019, from midnight.

Continental Europe

Great Britain

Nordic Grid

Electrical Data Recorder (EDR) across the globe

There is a scarcity of power-grid frequency data freely available

Work by: Richard Jumar, Heiko Maass, Benjamin Schäfer, LRG, Veit Hagenmeyer Location of data: https://power-grid-frequency.org/

Electrical Data Recorder (EDR) across the globe Excerpts of the power-grid frequency recordings

17 recordings, over 12 synchronous areas

Electrical Data Recorder (EDR) across the globe Statistical properties of the recordings

 $\Delta f_{\tau}(t) = f(t+\tau) - f(t)$

EO: Earoe Islands IS: Iceland ES-GC: Spain, Gran Canaria ES-PM: Spain, Palma de Mallorca

SE: Sweden **GB:** Great Britain **DE:** Germanv EE: Estonia

ZA: South Africa RU: Russia US-TX: USA, Texas US-UT: USA, Utah

Kurtosis:
$$\kappa(X) = \operatorname{E}\left[\left(\frac{X-\mu_X}{\sigma_X}\right)^4\right] = \frac{\operatorname{E}\left[(X-\mu_X)^4\right]}{(\operatorname{E}\left[(X-\mu_X)^2\right])}$$

Power-grid frequency: A stochastic approach

We can precise an SDE for the "bulk" an heta(t) and "bulk" angular velocity $\omega(t)$

$$d\theta = \omega \, dt,$$

$$M d\omega = -c_1 \omega \, dt - c_2 \theta \, dt + \Delta P \, dt + \left[\epsilon \, dW(t) \right],$$

where c_1 is the primary control, c_2 is the secondary control, ΔP is the power mismatch, and dW is an uncorrelated Gaussian noise with amplitude . We can write a Fokker–Planck equation (for ΔP = 0)

$$\frac{\partial p}{\partial t} = -\frac{\partial}{\partial \omega} \left(c_1 \omega p \right) + \left| \frac{\epsilon^2}{2} \right| \frac{\partial^2 p}{\partial \omega^2}$$
$$= -\frac{\partial}{\partial \omega} \mathcal{D}^{(1)} p + \frac{\partial^2}{\partial \omega^2} \mathcal{D}^{(2)} p.$$

Power-grid frequency: A scaling law

Take that the stochastic noise present is a sum of i.i.d Gaussian distributed random variables

$$\frac{\partial p}{\partial t} = -\frac{\partial}{\partial \omega} \left(c_1 \omega p \right) + \left[\frac{\epsilon^2}{2} \right] \frac{\partial^2 p}{\partial \omega^2} = -\frac{\partial}{\partial \omega} \left(c_1 \omega p \right) + \left| \frac{1}{2} \frac{\sum_{i=1}^N \epsilon_i^2}{M^2} \right| \frac{\partial^2 p}{\partial \omega^2} \right|$$

which results in a relation[†]

$$\sigma \sim \frac{1}{\sqrt{c_1 N}}$$
 or strictly from the diffusion: $\boxed{\epsilon \sim \frac{1}{\sqrt{N}}}$

With N the number of nodes and an estimator $\hat{\epsilon} = \frac{1}{2} \lim_{\tau \to 0} \frac{1}{\tau} \langle (X(t+\tau) - X(t))^2 | X(t) = f \rangle$

†Schäfer, B., Beck, C., Aihara, K., Witthaut, D., Timme, M. *Non-Gaussian power grid frequency fluctuations characterized by Lévy-stable laws and superstatistics*, Nature Energy 3(2):119–126, 2018, doi:10.1038/s41560-017-0058-z

Power-grid frequency: A scaling law

The finer details in the same synchronous area Synchronised recordings in the Continental European grid

4 recordings with the EDR, +2 recording from the Hungarian TSO MAVIR. From 2019-07-09 to 2019-07-15, with a 1 second sampling.

Increment statistics: $\Delta f_{\tau}(t) = f(t+\tau) - f(t)$

The finer details in the same synchronous area Synchronised recordings in the Continental European grid

Quantifying fluctuations

Applying Detrended Fluctuation Analysis (DFA): we can obtain a fluctuation function $F^2(\ell)$ for a segment with length ℓ :

 $F^2(\ell)$ comprises solely the variance of the increments

Quantifying fluctuations Regime of amplitude synchronisation

For a detailed analysis of DFA, see: Meyer, P. G., Anvari, M., Kantz, H. *Identifying characteristic time scales in power grid frequency fluctuations with DFA*, Chaos: An Interdisciplinary Journal of Nonlinear Science 30:013130, 2020, doi:10.1063/1.5123778

Quantifying fluctuations

Forschungszentrum

Regime of amplitude synchronisation: "time-to-bulk" behaviour

Envoi: Space and time correlations

We have:

- Gathered a large dataset of power-grid frequency which is still growing.
- Identified characteristic scaling of the diffusion with the number of consumers.
- Devised a method to uncover a global synchronisation of fluctuations across a synchronous area.

ARTICLE OPEN Mttps://doi.org/10.1038/s41467-020-19732-7 OPEN Open database analysis of scaling and spatio-temporal properties of power	nature	
Open database analysis of scaling and spatio-temporal properties of power	ARTICLE	Check for updates
	Open database analysis of scaling and spatio-temporal properties of power	
	Leonardo Rydin Gorjão ^{1,2} , Richard Jumar ¹ , ³ , Heiko Maass ³ , Veit Hagenmeyer ³ , ¹ Johannes Kruse ^{0,1,2} , Marc Timme ⁵ , Christian Beck ^{0,6} , Dirk Witthaut ^{1,2} & Benja	3. Cigdem Yalcin⊕ ⁴ , min Schäfer⊕ ^{6⊠}
Leonardo Rydin Gorjão o ^{0, I,2} , Richard Jumar o 3, Heiko Maass ³ , Veit Hagenmeyer o 3, G. Cigdem Yalcin o 4, Johannes Kruse o ^{1,2} , Marc Timme o ⁵ , Christian Beck o ⁶ , Dirk Witthaut o ^{1,2} & Benjamin Schäfer o ⁶		doi:10.1038/s41467-020-19

Future work:

- Is the physics fluctuation amplitude universal? What is the impact of the topology of power grids?
- What are the consequences for smaller (island) grids?

Funding and support

Thank you for your attention

HELMHOLTZ UO UNCERTAINTY QUANTIFICATION

Funding: the German Federal Ministry of Education and Research (grant no. 03EK3055B) and the Helmholtz Association (via the joint initiative "Energy System 2050 – A Contribution of the Research Field Energy", the grant "Uncertainty Quantification – From Data to Reliable Knowledge (UQ)" with grant no. ZT-I-0029 and the grant no. VH-NG-1025). This work was performed as part of the Helmholtz School for Data Science in Life, Earth and Energy (HDS-LEE). This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 840825.

