Power grids: Small Signal Stability vs. Dynamical Parameters

Melvyn Tyloo
melvyn.tyloo@gmail.com

The 11th International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies ENERGY 2021
Special Track on ”Modelling Dynamics of Power Grids” (MoDyPoG)

References

MT, Jacquod Physical review E 101 (3), 032303 (2019)
Melvyn obtained his master degree and PhD in Theoretical Physics at the Swiss Federal Institute of Technology in Lausanne (EPFL) respectively in 2016 and 2020. He is currently working as a postdoc researcher at the University of Geneva (UNIGE). His research focuses on complex network-coupled dynamical systems and the identification of their local/global vulnerabilities against external perturbations. He also recently developed methods for inferring coupling network from time-series and for locating line and node disturbances in diffusively coupled agents.
Motivation: Energy Transition

Traditional transmission power grid
Motivation: Energy Transition

Traditional transmission power grid
Motivation: Energy Transition

Future transmission power grid
Motivation: Energy Transition

Traditional transmission power grid

50/60Hz

50/60Hz

50/60Hz

50/60Hz

50/60Hz
Motivation: Energy Transition

Future transmission power grid

50/60Hz
Motivation: Energy Transition

How do inertia and damping affect performances?
Swing equations in the lossless line approximation

Voltage phase dynamics is given by

\[m_i \ddot{\omega}_i + d_i \dot{\omega}_i = P_i - \sum_j b_{ij} \sin(\theta_i - \theta_j), \quad i \in \text{Generators}, \tag{1} \]

\[d_i \dot{\omega}_i = P_i - \sum_j b_{ij} \sin(\theta_i - \theta_j), \quad i \in \text{Loads}. \tag{2} \]

\[b_{ij} : \text{line capacity.} \]
\[m_i : \text{inertia.} \]
\[d_i : \text{damping.} \]
\[\omega_i = \dot{\theta}_i. \]
Swing equations in the lossless line approximation:
The common assumption on dynamical parameters

\[\gamma^{-1} d_i \dot{\omega}_i + d_i \omega_i = P_i - \sum_j b_{ij} \sin(\theta_i - \theta_j). \]

\(b_{ij} \): line capacity.
\(m_i \): inertia.
\(d_i \): damping.
\(\omega_i = \dot{\theta}_i. \)

Usual assumptions that allow analytical treatment: inertia-to-damping constant ratio \(\gamma^{-1} = m_i/d_i, \forall i. \)
Swing equations in the lossless line approximation: The common assumption on dynamical parameters

\[\gamma^{-1} d_i \dot{\omega}_i + d_i \omega_i = P_i - \sum_{j} b_{ij} \sin(\theta_i - \theta_j) . \]

\(b_{ij} \): line capacity.
\(m_i \): inertia.
\(d_i \): damping.
\(\omega_i = \dot{\theta}_i \).

Usual assumptions that allow analytical treatment: inertia-to-damping constant ratio \(\gamma^{-1} = m_i / d_i \), \(\forall i \).
We also take this assumption... but eventually say something about realistic power networks!
Robustness Assessment

Quadratic performance metrics: \mathcal{H}_2 norms → Quantify the amplitude of the transient response following a disturbance.

$$\theta_i(t), \omega_i(t)$$

$$\theta_i^{(0)}, \omega_i^{(0)}$$
Robustness Assessment

- Quadratic performance metrics: \mathcal{H}_2 norms.

$\theta_i(t), \omega_i(t)$

Performance vs. Topology \rightarrow Generalized Kirchhoff indices Kf_n and resistance Centralities $C_n(k)$.

MT, Coletta, Jacquod *Physical review letters* **120** (8), 084101 (2018)
Response to Perturbations: Linearization

Swing equations in the lossless line approximation:

\[
\gamma^{-1} d_i \ddot{\theta}_i + d_i \dot{\theta}_i = P_i - \sum_j b_{ij} \sin(\theta_i - \theta_j).
\]

Linear response: Perturbation of the injected/consumed powers.

- \(P_i(t) = P_i^{(0)} + \delta P_i(t) \rightarrow \theta_i(t) = \theta_i^{(0)} + \delta \theta_i(t) \):

\[
\gamma^{-1} \delta \ddot{\varphi}(t) + \delta \dot{\varphi}(t) = D^{-1/2} \delta P(t) - D^{-1/2} \mathbb{I}_s(\{\theta_i^{(0)}\}) D^{-1/2} \delta \varphi(t),
\]

where \(\delta \varphi(t) = D^{1/2} \delta \theta(t) \).
Response to Perturbations: Linearization

Swing equations in the lossless line approximation:

\[\gamma^{-1} d_i \ddot{\theta}_i + d_i \dot{\theta}_i = P_i - \sum_j b_{ij} \sin(\theta_i - \theta_j). \]

Linear response: Perturbation of the injected/consumed powers.

- \(P_i(t) = P_i^{(0)} + \delta P_i(t) \rightarrow \theta_i(t) = \theta_i^{(0)} + \delta \theta_i(t): \)

\[\gamma^{-1} \delta \ddot{\phi}(t) + \delta \dot{\phi}(t) = D^{-1/2} \delta P(t) - D^{-1/2} \mathbb{L}(\{\theta_i^{(0)}\}) D^{-1/2} \delta \phi(t), \]

\(\mathbb{L}(\{\theta_i^{(0)}\}) \): the weighted Laplacian matrix,

\[[D^{-1/2} \mathbb{L} D^{-1/2}]_{ij} = \begin{cases} -\frac{b_{ij}}{\sqrt{d_i d_j}} \cos(\theta_i^{(0)} - \theta_j^{(0)}), & i \neq j, \\ \frac{1}{d_i} \sum_k b_{ik} \cos(\theta_i^{(0)} - \theta_k^{(0)}), & i = j. \end{cases} \]
Linear response: Perturbation of the injected/consumed powers.

- \(P_i(t) = P_i^{(0)} + \delta P_i(t) \rightarrow \theta_i(t) = \theta_i^{(0)} + \delta \theta_i(t) : \)

\[
\gamma^{-1} \delta \ddot{\varphi}(t) + \delta \dot{\varphi}(t) = D^{-1/2} \delta P(t) - D^{-1/2} \mathbb{I}_n(\{\theta_i^{(0)}\}) D^{-1/2} \delta \varphi(t),
\]

Solution:

\[
\delta \varphi_i(t) = \sum_{\alpha} \gamma e^{-\frac{\gamma - \Gamma_{\alpha}}{2} t} \int_0^t e^{\Gamma_{\alpha} t_1} \times \int_0^{t_1} [D^{-1/2} \delta P(t_2)]^\top u_{\alpha} D e^{-\frac{\gamma - \Gamma_{\alpha}}{2} t_2} dt_2 dt_1 u_{\alpha, i} \quad (3)
\]
Fluctuating Power Generation

Time-correlated power fluctuations:

\[\langle \delta P_i \rangle = 0, \quad \langle \delta P_i(t) \delta P_j(t') \rangle = \delta_{ij} \delta P_0^2 \exp\left[-|t - t'|/\tau_0\right]. \]

Primary control effort:

\[\mathcal{P}(T) = \lim_{T \to \infty} T^{-1} \int_0^T (\omega^\top - \bar{\omega}^\top) D(\omega - \bar{\omega}) \, dt, \]
\[= \lim_{T \to \infty} T^{-1} \int_0^T (\delta \varphi^\top - \bar{\delta \varphi}^\top)(\delta \varphi - \bar{\delta \varphi}) \, dt. \]

Linear system \rightarrow analytical solution!
Primary control effort:

\[\overline{P}^\infty = \sum_{\alpha \geq 2} \sum_{i \in N_n} \delta P_{0i}^2 u_{\alpha,i}^D \frac{\lambda_{D,i}^\tau \gamma^{-1} \tau_0^{-1}}{\lambda_{\alpha}^{\tau_0} + 1} d_i^{-1}, \]

with \(\lambda_{\alpha}^{D} \) the eigenvalue associated with the eigenvector \(u_{\alpha}^{D} \) of \(L_{D} \) of the form

Melvyn Tyloo (melvyn.tyloo@gmail.com)
Primary Control Effort

Short noise correlation time: \(\tau_0 \ll \gamma^{-1}, \lambda_{\alpha}D^{-1} \)

\[
\bar{P}^\infty = \tau_0 \sum_{i \in N_n} \delta P^2_{0i} \left(1/m_i - 1/\sum_j m_j\right).
\]

No dependence on damping nor network connectivity!

Long correlation time: \(\tau_0 \gg \gamma^{-1}, \lambda_{\alpha}D^{-1} \)

\[
\bar{P}^\infty = \tau_0^{-1} \sum_{\alpha \geq 2} \sum_{i \in N_n} \frac{\delta P^2_{0i} u_{\alpha,i}^D 2d_i^{-1}}{\lambda_{\alpha}^D} .
\]

No dependence on inertia!
Primary Control Effort

Short noise correlation time: $\tau_0 \ll \gamma^{-1}, \lambda_{\alpha} D^{-1}$

$$\overline{P}^\infty = \tau_0 \sum_{i \in N_n} \delta P_{0i}^2 \left(1/m_i - 1/\sum_j m_j\right).$$

No dependence on damping nor network connectivity!

Long correlation time: $\tau_0 \gg \gamma^{-1}, \lambda_{\alpha} D^{-1}$

$$\overline{P}^\infty = \tau_0^{-1} \sum_{\alpha \geq 2} \sum_{i \in N_n} \delta P_{0i}^2 u_{\alpha,i} D^2 d_i^{-1} \lambda_{\alpha}^{-1}. $$

No dependence on inertia!

Realistic high-voltage power networks: $\lambda_{\alpha} D^{-1} < 0.5s$ and $\gamma^{-1} \approx 2.5s$.

Renewable power sources fluctuate on time scales of few seconds.
Numerical Validation

IEEE 118-Bus Test Case:

(a) $\chi^{D_{\tau_0}} \ll 1$

(b) $\chi^{D_{\tau_0}} \gg 1$

Numerical Validation

PanTaGruEl:

(a) $\bar{\rho}_{\text{num}}$ vs $\bar{\rho}_{\text{th}}$

- $\gamma \tau_0 = 4$
- $\gamma \tau_0 = 40$
- $m/d \neq \gamma^{-1}$

(b) $u_{2,i}^D$ and $u_{3,i}^D$ with color scale

Conclusion

Description of realistic power networks

- Consider $D^{-1/2}L D^{-1/2}$ instead of $M^{-1/2}L M^{-1/2}$,
- Time-correlated noise instead of white-noise,
→ Primary control effort for power networks with inhomogeneous dynamical parameters.
- Inertia does not impact much primary control effort.
→ Focus on damping/control.

References