

Potsdam Institute for Climate Impact Research

The Risk of Cascading Failures in Electrical Grids Triggered by Extreme Weather Events

Julian M. Stürmer*, Anton Plietzsch*, Mehrnaz Anvari*,(1)

* Potsdam Institute for Climate Impact Research (PIK)

(1) <u>email:</u> anvari@pik-potsdam.de

Dr. Mehrnaz Anvari

- > Mehrnaz Anvari received the M.Sc. degree in physics from Iran University of Science and Technology, Tehran, Iran, in 2010 and the Ph.D. degree from Carl von Ossietzky University Oldenburg, Germany, in 2016, where she was awarded the George Christoph Lichtenberg Fellowship for this period.
 - She was awarded a two-year project fellowship from the Max-Planck Institute for Physics of Complex Systems, where she worked on the dynamics of grid frequency and load profile. Currently, she is a researcher at the Potsdam Institute for Climate Impact Research, working group Infrastructure and complex networks.

copyright PIK/KlemensKarkow

Research Interests & Projects

- > Stochastic Processes
- > Data Analysis
- › Network (Focus: Electrical Network)

Collective Nonlinear Dynamics of Complex Power Networks Hybrid and multimodal energy systems

STROMNETZE Forschungsinitiative der Bundesregierung

Motivation What is the effect of climate change on electrical grids?

Climate change and resource adequacy

Shortages of rain: Blackout in Kenya (2010), India (2008), Tanzania (2006), ...

An aerial view of Folsom Dam and Lake in Sacramento County shows low water levels in January 2014. (Image credit: Paul Hames / California Department of Water Resources)

The **impact of climate change** on a renewable European electricity network

Markus Schlott, et. al., Applied Energy, vol. 230, pp. 1645-1659 (2018)

Extreme weather events and damage in infrastructures

 Human-induced climate change leads frequent extreme weather events: floods, heavy rainfall, winter storms, icing, hurricanes, ...

Science, vol. 352, pp. 1517, 2016

Hurricane Laura 2020 https://dailyenergyinsider.com/

Extreme weather events and damage in infrastructures

 Human-induced climate change leads frequent extreme weather events: floods, heavy rainfall, winter storms, icing, hurricanes, ...

Science, vol. 352, pp. 1517, 2016

- Reports show that electrical grid components are at greater risk of failure
 - > Wind storm in Britain

2014 International Conference on Probabilistic Methods Applied to Power Systems IEEE

> Localized downburst in Australia

Engineering structures, vol. 22, pp. 1173, 2000.

> Intense hurricanes in coastal states of the U.S.

Scientific reports, vol. 8, pp. 1, 2018

U.S. Department of Energy, "Combined report: Hurricanes Sally & Laura," September 2020

Mehrnaz Anvari

The Risk of Cascading Failures in Electrical Grids ...

Hurricane Laura 2020 https://dailyenergyinsider.com/

Extreme weather events and damage in infrastructures

6

 Human-induced climate change leads frequent extreme weather events: floods, heavy rainfall, winter storms, icing, hurricanes, ...

Sci-ence, vol. 352, pp. 1517, 2016

- Reports show that electrical grid components are at greater risk of failure
 - > Wind storm in Britain

2014 International Conference on Probabilistic Methods Applied to Power Systems IEEE

> Localized downburst in Australia

Engineering structures, vol. 22, pp. 1173, 2000.

> Intense hurricanes in coastal states of the U.S.

Scientific reports, vol. 8, pp. 1, 2018

U.S. Department of Energy, "Combined report: Hurricanes Sally & Laura," September 2020

Mehrnaz Anvari

The Risk of Cascading Failures in Electrical Grids ...

Hurricane Laura 2020 https://dailyenergyinsider.com/

Content

Content

- > Synthetic electrical grid of Texas
- > Electrical grid model: AC & DC model
- > Hurricane-induced failures: Hurricane Ike
- > Cascading failures

Synthetic Electrical Grid of Texas Introduce the electrical test case

Number	Name	SubLatitude	SubLongitude	BusCat	NomkV	Vpu	kV	Vangle	LoadMW	LoadMvar	GenMW	GenMvar	ShuntMvar
1001	ODESSA 2 0	31.907	-102.262	PQ	115.00	0.97944	11.263.510	-2.273.484	2.078.100	588.795			
1002	PRESIDIO 2 0	29.888	-104.519	PQ	115.00	101.274	11.646.468	-1.808.854	1.541.400	436.730			
1003	O DONNELL 1 0	32.926	-101.648	PQ	115.00	100.926	11.606.523	-1.708.670					
1004	O DONNELL 1 1	32.926	-101.648	PQ (Gens at Var Limit)	230.00	101.307	23.300.626	-1.893.400	15.825.000	-3.038.000			
1005	BIG SPRING 5 0	32.208	-101.388	PQ	115.00	100.558	11.564.125	-1.607.716					
1006	BIG SPRING 5 1	32.208	-101.388	PV	13.80	100.000	1.380.000	-1.390.559	2.573.000	-435.362			
1007	VAN HORN 0	31.093	-104.625	PV	115.00	102.000	11.730.000	-1.846.721	700.800	198.560	- 0.84895		
1008	IRAAN 2 0	30.931	-102.201	PQ	115.00	101.929	11.721.778	-860.521					Them
1009	IRAAN 2 1	30.931	-102.201	PQ (Gens at Var Limit)	13.80	100.924	1.392.751	-530.960	6.187.000	-1.188.000			

Substation data :

https://electricgrids.engr.tamu.edu/

Mehrnaz Anvari

The Risk of Cascading Failures in Electrical Grids ...

Texas

- > 2000 buses
- > 1125 load buses with
 ~ 70 MVA total load
- > 432 generator buses... in 1250 substations
- > 861 transformers
- > 2345 transmission lines
- > 4 high voltage levels

- > 2000 buses
- > 1125 load buses with
 ~ 70 MVA total load
- > 432 generator buses... in 1250 substations
- > 861 transformers
- > 2345 transmission lines
- > 4 high voltage levels

Source: Natural Resources, vol. 10, pp. 96-114 (2019)

- > 2000 buses
- > 1125 load buses with
 ~ 70 MVA total load
- > 432 generator buses... in 1250 substations
- > 861 transformers
- > 2345 transmission lines
- > 4 high voltage levels

Source: Natural Resources, vol. 10, pp. 96-114 (2019)

Electrical Grid Modeling AC & DC power flow model

> Apparent power:

$$S_{i} = P_{i} + iQ_{i} = V_{i}I_{i}^{*}; V_{i} = |V_{i}|e^{i\theta_{i}}$$

$$current: I_{i} = \sum_{j=1}^{N} Y_{ij}V_{j}$$

$$admittance: Y_{ij} = G_{ij} + iB_{ij}$$

$$P_{i} = \sum_{j=1}^{N} |V_{i}||V_{j}|(G_{ij}cos(\theta_{i} - \theta_{j}) + B_{ij}sin(\theta_{i} - \theta_{j}))$$

$$Q_{i} = \sum_{j=1}^{N} |V_{i}||V_{j}|(G_{ij}sin(\theta_{i} - \theta_{j}) + B_{ij}cos(\theta_{i} - \theta_{j}))$$

> Apparent power:

$$\begin{split} S_{i} &= P_{i} + iQ_{i} = V_{i}I_{i}^{*}; V_{i} = |V_{i}|e^{i\theta_{i}}\\ current: \ I_{i} &= \sum_{j=1}^{N} Y_{ij}V_{j}\\ admittance: \ Y_{ij} = G_{ij} + iB_{ij}\\ P_{i} &= \sum_{j=1}^{N} |V_{i}||V_{j}|(G_{ij}cos(\theta_{i} - \theta_{j}) + B_{ij}sin(\theta_{i} - \theta_{j}))\\ Q_{i} &= \sum_{j=1}^{N} |V_{i}||V_{j}|(G_{ij}sin(\theta_{i} - \theta_{j}) + B_{ij}cos(\theta_{i} - \theta_{j})) \end{split}$$

> Loads/PQ buses: (P, Q)<0, ($|V|, \theta$) \rightarrow unknown

> Apparent power:

$$S_{i} = P_{i} + iQ_{i} = V_{i}I_{i}^{*}; V_{i} = |V_{i}|e^{i\theta_{i}}$$

$$current: I_{i} = \sum_{j=1}^{N} Y_{ij}V_{j}$$

$$admittance: Y_{ij} = G_{ij} + iB_{ij}$$

$$P_{i} = \sum_{\substack{j=1\\N}}^{N} |V_{i}||V_{j}|(G_{ij}cos(\theta_{i} - \theta_{j}) + B_{ij}sin(\theta_{i} - \theta_{j}))$$

$$Q_{i} = \sum_{j=1}^{N} |V_{i}||V_{j}|(G_{ij}sin(\theta_{i} - \theta_{j}) + B_{ij}cos(\theta_{i} - \theta_{j}))$$

> Loads/PQ buses: (P, Q)<0, ($|V|, \theta$) \rightarrow unknown

> Generators/PV buses: P>0, |V|=const, $\theta \rightarrow unknown$

> Apparent power:

$$S_{i} = P_{i} + iQ_{i} = V_{i}I_{i}^{*}; V_{i} = |V_{i}|e^{i\theta_{i}}$$

$$current: I_{i} = \sum_{j=1}^{N} Y_{ij}V_{j}$$

$$admittance: Y_{ij} = G_{ij} + iB_{ij}$$

$$P_{i} = \sum_{\substack{j=1\\N}}^{N} |V_{i}||V_{j}|(G_{ij}cos(\theta_{i} - \theta_{j}) + B_{ij}sin(\theta_{i} - \theta_{j}))$$

$$Q_{i} = \sum_{j=1}^{N} |V_{i}||V_{j}|(G_{ij}sin(\theta_{i} - \theta_{j}) + B_{ij}cos(\theta_{i} - \theta_{j}))$$

> Loads/PQ buses: (P, Q)<0, ($|V|, \theta$) \rightarrow unknown

- > Generators/PV buses: P>0, |V|=const, $\theta \rightarrow unknown$
- > Slack buses: ($|V|, \theta$) $\rightarrow fixed$, P compensates losses

Mehrnaz Anvari

POWER MODE

$$j=1$$

$$admittance: Y_{ij} = G_{ij} + iB_{ij}$$

$$P_i = \sum_{\substack{j=1\\N}}^{N} |V_i| |V_j| (G_{ij}cos(\theta_i - \theta_j) + B_{ij}sin(\theta_i - \theta_j))$$

$$Q_i = \sum_{\substack{j=1\\j=1}}^{N} |V_i| |V_j| (G_{ij}sin(\theta_i - \theta_j) + B_{ij}cos(\theta_i - \theta_j))$$

 $S_{i} = P_{i} + iQ_{i} = V_{i}I_{i}^{*}; V_{i} = |V_{i}|e^{i\theta_{i}}$ current: $I_{i} = \sum Y_{ij}V_{j}$

> Loads/PQ buses: (P, Q)<0, ($|V|, \theta$) \rightarrow unknown

- > Generators/PV buses: P>0, |V|=const, $\theta \rightarrow unknown$
- > Slack buses: ($|V|, \theta$) $\rightarrow fixed$, P compensates losses

Mehrnaz Anvari

Apparent power:

> Apparent power:

$$\begin{split} S_{i} = P_{i} + iQ_{i} = V_{i}I_{i}^{*}; V_{i} = |V_{i}|e^{i\theta_{i}}\\ current: I_{i} = \sum_{j=1}^{N} Y_{ij}V_{j}\\ admittance: Y_{ij} = G_{ij} + iB_{ij}\\ P_{i} = \sum_{j=1}^{N} |V_{i}||V_{j}| (G_{ij}cos(\theta_{i} - \theta_{j}) + B_{ij}sin(\theta_{i} - \theta_{j}))\\ Q_{i} = \sum_{j=1}^{N} |V_{i}||V_{j}| (G_{ij}sin(\theta_{i} - \theta_{j}) + B_{ij}cos(\theta_{i} - \theta_{j}))\\ 1 \text{ Neglect ohmic losses: } G_{ij} \sim 0 \end{split}$$

Apparent power: $S_{i} = P_{i} + iQ_{i} = V_{i}I_{i}^{*}; V_{i} = |V_{i}|e^{i\theta_{i}}$ current: $I_i = \sum_{j=1}^{N} Y_{ij} V_j$ admittance: $Y_{ij} = G_{ij} + iB_{ij}$ $P_{i} = \sum_{\substack{j \in I \\ N}}^{N} |V_{i}| |V_{j}| (G_{ij}cos(\theta_{i} - \theta_{j}) + B_{ij}sin(\theta_{i} - \theta_{j}))$ $Q_{i} = \sum_{\substack{i=1}}^{N} |V_{i}| |V_{j}| (G_{ij}sin(\theta_{i} - \theta_{j}) + B_{ij}cos(\theta_{i} - \theta_{j}))$ 1 Neglect ohmic losses: $G_{ij} \sim 0$ 2 Fix the voltage magnitude: $|V_i| = 1 p. u$.

Apparent power:

$$S_{i} = P_{i} + iQ_{i} = V_{i}I_{i}^{*}; V_{i} = |V_{i}|e^{i\theta_{i}}$$

$$current: I_{i} = \sum_{j=1}^{N} Y_{ij}V_{j}$$

$$admittance: Y_{ij} = G_{ij} + iB_{ij}$$

$$P_{i} = \sum_{j=1}^{N} |V_{i}||V_{j}| (G_{ij}cos(\theta_{i} - \theta_{j}) + B_{ij}sin(\theta_{i} - \theta_{j})) \xrightarrow{3} P_{i} = \sum_{j=1}^{N} B_{ij}(\theta_{i} - \theta_{j})$$

$$(2)Q_{i} = \sum_{j=1}^{N} |V_{i}||V_{j}| (G_{ij}sin(\theta_{i} - \theta_{j}) + B_{ij}cos(\theta_{i} - \theta_{j}))$$

$$1 \text{ Neglect ohmic losses: } G_{ij} \sim 0$$

$$2 \text{ Fix the voltage magnitude: } |V_{i}| = 1 \text{ p. u.}$$

$$3 \text{ Small voltage angle difference: } sin(\theta_{i} - \theta_{j}) \sim (\theta_{i} - \theta_{j})$$

Apparent power:

$$S_{i} = P_{i} + iQ_{i} = V_{i}I_{i}^{*}; V_{i} = |V_{i}|e^{i\theta_{i}}$$

$$current: I_{i} = \sum_{j=1}^{N} Y_{ij}V_{j}$$

$$admittance: Y_{ij} = G_{ij} + iB_{ij}$$

$$P_{i} = \sum_{j=1}^{N} |V_{i}||V_{j}| (G_{ij}cos(\theta_{i} - \theta_{j}) + B_{ij}sin(\theta_{i} - \theta_{j})) \xrightarrow{3} P_{i} = \sum_{j=1}^{N} B_{ij}(\theta_{i} - \theta_{j})$$

$$(3) Q_{i} = \sum_{j=1}^{N} |V_{i}||V_{j}| (G_{ij}sin(\theta_{i} - \theta_{j}) + B_{ij}cos(\theta_{i} - \theta_{j}))$$

$$(3) Q_{i} = \sum_{j=1}^{N} |V_{i}||V_{j}| (G_{ij}sin(\theta_{i} - \theta_{j}) + B_{ij}cos(\theta_{i} - \theta_{j}))$$

$$(3) Q_{i} = \sum_{j=1}^{N} |V_{i}||V_{j}| (G_{ij}sin(\theta_{i} - \theta_{j}) + B_{ij}cos(\theta_{i} - \theta_{j}))$$

$$(3) Q_{i} = \sum_{j=1}^{N} |V_{i}||V_{j}| (G_{ij}sin(\theta_{i} - \theta_{j}) + B_{ij}cos(\theta_{i} - \theta_{j}))$$

$$(3) Q_{i} = \sum_{j=1}^{N} |V_{i}||V_{j}| (G_{ij}sin(\theta_{i} - \theta_{j}) + B_{ij}cos(\theta_{i} - \theta_{j}))$$

,11111

Comparison of AC & DC power flow

Wind-Induced Damages Ike hurricane

All tropical storms hitting Texas between 1980 & 2020

Source: **Dr. Thomas Vogt**, Transformation Pathway Department, PIK

Hurricane Ike 2008

Source of Wind field data:

Dr. Thomas Vogt, Transformation Pathway Department, PIK Using **CLIMADA** Python implementation & the **IBTrACS** archive

Mehrnaz Anvari

Hurricane Ike September 2008

- > Category 4 hurricane
- Third major hurricane of the 2008
 Atlantic hurricane season
- \rangle Made landfall on Texas on Sep. 14th
- > Caused min. 195 death
- > Damages in U.S. \sim 30\$ billion
- Millions of people (ranging from 2.8 to 4.5 millions) without electricity in Texas for weeks

> Wind force on transmission lines^[1]

Source: Natural Resources, vol. 10, pp. 96-114 (2019)

[1] American Society of Civil Engineers (ASCE)

[1] American Society of Civil Engineers (ASCE)

-104

-102

-100

> Wind force on transmission lines^[1]

$$F_{wind} (\boldsymbol{v}, \boldsymbol{l}) = Qk_z I_{FW} G_{WRF}(\boldsymbol{l}) C_f A_C \boldsymbol{v}^2$$

> Calculate line damage probability^[2]

Source: Natural Resources, vol. 10, pp. 96-114 (2019)

[1] American Society of Civil Engineers (ASCE)[2] Reliability Engineering and System Safety, vol. 95, pp. 323 (2010)

> Wind force on transmission lines^[1]

$$F_{wind} (\boldsymbol{v}, \boldsymbol{l}) = Qk_z I_{FW} G_{WRF}(\boldsymbol{l}) C_f A_C \boldsymbol{v}^2$$

> Calculate line damage probability^[2]

$$p_{k}(v, l) = min(y \frac{F_{wind,k}(v, l)}{F_{brk,k}}, 1)$$

$$max. wind force$$

[1] American Society of Civil Engineers (ASCE)[2] Reliability Engineering and System Safety, vol. 95, pp. 323 (2010)

Source: Natural Resources, vol. 10, pp. 96-114 (2019)

Mehrnaz Anvari

> Wind force on transmission lines^[1]

$$F_{wind} (\boldsymbol{v}, \boldsymbol{l}) = Qk_z I_{FW} G_{WRF}(\boldsymbol{l}) C_f A_C \boldsymbol{v}^2$$

> Calculate line damage probability^[2]

$$p_k(\boldsymbol{v}, \boldsymbol{l}) = min(\gamma \frac{F_{wind,k}(\boldsymbol{v}, \boldsymbol{l})}{F_{brk,k}}, 1)$$

 \rightarrow To calibrate the value of γ

[1] American Society of Civil Engineers (ASCE)[2] Reliability Engineering and System Safety, vol. 95, pp. 323 (2010)

Source: Natural Resources, vol. 10, pp. 96-114 (2019)

Mehrnaz Anvari

> Wind force on transmission lines^[1]

$$F_{wind} (\boldsymbol{v}, \boldsymbol{l}) = Qk_z I_{FW} G_{WRF}(\boldsymbol{l}) C_f A_C \boldsymbol{v}^2$$

> Calculate line damage probability^[2]

$$p_k(\boldsymbol{v}, \boldsymbol{l}) = min(\gamma \frac{F_{wind,k}(\boldsymbol{v}, \boldsymbol{l})}{F_{brk,k}}, 1)$$

[1] American Society of Civil Engineers (ASCE)[2] Reliability Engineering and System Safety, vol. 95, pp. 323 (2010)

Mehrnaz Anvari

Source: Natural Resources, vol. 10, pp. 96-114 (2019)

Cascading Failures Hurricane-induced cascading failures

 Wind field data --> one-hour time resolution, ~60 hours

Wind field data --> one-hour time resolution, ~60 hours

(1) Calculate wind-induced line failures in **each hour**

- Wind field data --> one-hour time resolution, ~60 hours
- (1) Calculate wind-induced line failures in **each hour**
- (2) Recalculate DC power flow & deactivate overloaded lines
- (3) Repeat step (2) till there is no overloaded lines

- Wind field data --> one-hour time resolution, ~60 hours
- (1) Calculate wind-induced line failures 36°N Loads Generators in each hour Empty buses cond 34.5°N 0.8 (2) Recalculate DC power flow & 33°N deactivate overloaded lines 0.6 Line ale 31.5°N (3) Repeat step (2) till there is no Ũ overloaded lines S 30°N 0.4 Φ Lim 28.5°N **Control loop** 0.2 27°N

94.5°W

- 55

50

45

40

35 speed

25 Im/s

20

15

- 10

- 5

Wind field data --> one-hour time resolution, ~60 hours

94.5°W

Wind field data --> one-hour time resolution, ~60 hours

Typical scenario

Typical and worst case scenario

Worst scenario final loss~80%

Typical scenario final loss~30%

1.0

Mehrnaz Anvari

Collaborators

Julian Stürmer Master student Technical University, Berlin

Anton Plietzsch Doctoral researcher Humboldt University, Berlin

Thank you!

Julian Stürmer Master student Technical University, Berlin

Anton Plietzsch Doctoral researcher Humboldt University, Berlin

