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1Gipsa-Lab, CNRS, UGA, Grenoble, France
2CNR, Sesto Fiorentino, Italy

3 TU Berlin, PIK Potsdam, Germany
31 May 2021

Liudmila Tumash Stability and control of power grids Gipsa-Lab, CNRS 1 / 29



Presenter’s short resume

B.Sc. in physics from Technical
University of Berlin

I Period: april 2013 - february 2016
I Focus: nonlinear dynamics⇒

Stuart-Landau oscillators
I Thesis: Stability of amplitude

chimeras in the Stuart-Landau model
M.Sc. in physics from Technical University of Berlin

I Period: february 2016 - march 2018
I Focus: nonlinear dynamics⇒ power grid networks
I Thesis: Influence of noise in shaping the dynamics of power grids

PhD in applied mathematics from University Grenoble Alpes
I Period: september 2018 - august 2021
I Focus: control theory⇒ control of urban traffic⇒ PDEs
I Thesis: Traffic control in large-scale urban networks

Liudmila Tumash Stability and control of power grids Gipsa-Lab, CNRS 2 / 29



Motivation

Ecological problem: traditional power plants
⇒ emission of greenhouse gases⇒ global warming

Suggested solution: increased usage of renewable energy sources

Three major changes: decentralization, spatial separation and
fluctuations of the power output

Main question: effect on stable operation of power grids?
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Modeling power grids

Illustration of the power grid mechanism

Power plant consists of power source and generator
⇒ electrical power is produced with frequency close to Ω = 50 Hz
∆θ: phase difference between the active generator and the passive
machine

Kuramoto model = power balance equation for generator/machine

Psource = Pacc + Pdiss + Ptransmitted
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Model
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Extended Kuramoto model

Dynamic model for rotator i

mθ̈i + θ̇i = Ωi +
K
Ni

N∑
j=1

Aij sin (θj − θi)

θi , θ̇i : instantaneous phase and frequency

Ωi : natural frequency (power of generators and loads)

K : coupling constant (transmission line capacities)

m > 0: inertial mass

A : symmetric connectivity matrix

Ni = Nc : node degree (here constant)

Nc = p(N − 1), where p is dilution parameter, 0 < p < 1

Liudmila Tumash Stability and control of power grids Gipsa-Lab, CNRS 6 / 29



Bimodal frequency distribution
Gaussian bimodal distribution

Ωi : g(Ω) =

[
pg
√

2π
e−

(Ω−Ω0+ )2

2 +
1 − pg
√

2π
e−

(Ω+Ω0− )2

2

]
and pg determines the peak location

Symmetric (case below): pg = 0.5, Ω0+ = Ω0− = 2

Asymmetric: pg = 0.2, Ω0+ = 3.2, Ω0− = 0.8

Power source can be either positive (generators) or negative (machines)
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Globally coupled and diluted networks

Fully connected network:
maximal node degree Nc = N − 1

p=1.0, no disorder

Erdős–Rényi network:
Nc = p(N − 1) with p < 1

p=0.40, more realistic
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Our contributions and presentation plan

Stable operation of power grids = synchronous state of the network

Stability analysis of sparse power grid networks

Numerical solution to find frequency synchronized solutions

Control of unstable frequency synchronized solutions

Examine interplay of noise and random connectivity

Control of noisy Italian power grid
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Deterministic system
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Synchronization transition: order parameter

Complex order parameter: r(t)e iφ(t) =
1
N

N∑
j=1

e iθj , r(t) ∈ [0, 1]

Parameters: m = 6, p = 0.2, Ω0 = 2, N = 500

AS: Asynchronous State
TW: Traveling Wave
SW: Standing Wave
PS: Partial Synchronization
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Synchronization transition: frequency profile
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Kuramoto model in case of frequency synchronization

Frequency synchronization: θ̇1 = . . . = θ̇n = ωc ⇒ θi − θj = const

Common frequency:

ωc =
1
N

N∑
i=1

Ωi ⇒ for large networks we expect ωc ≈ 0

Frequency synchronized solution of Kuramoto model

σ

N∑
j=1

Aij sin(θ0
j − θ

0
i ) = −α(Ωi − ωc)

where α = 1
m and σ = K

Ncm
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Stability analysis of frequency synchronized solution
Linearized system for small perturbations from frequency synchronization:(

δθ̇

δω̇

)
=

[
0 I

σM −αI

] (
δθ

δω

)
, where δθ, δω : N-dim vectors

M: N × N Laplacian matrix of a weighted undirected graph

M =


−

∑
j

A1j cos(θ0
j − θ

0
1) · · · A1N cos(θ0

1 − θ
0
N)

· · · · · · · · ·

AN1 cos(θ0
N − θ

0
1) · · · −

∑
j

ANj cos(θ0
j − θ

0
N)


Solve the eigenvalue problem and obtain:

∣∣∣(λ2 + λα)I − σM
∣∣∣ = 0 ⇒ λ =

−α ±
√
α2 + 4µσ
2

, with µ = eig(M)

If M is stable, then frequency synchronized solution is stable!
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Finding solutions

If
∣∣∣∣θ0

j − θ
0
i

∣∣∣∣ < π
2 , then M is a diagonally dominant matrix ⇒ µ ≤ 0

In the neighbourhood
{
θ0

i

}
= 0, solution is always stable (µ ≤ 0)

Not for all coupling K there is a solution (only if K > Kc)

Find stable and unstable solutions (set of initial phases) numerically:

Fi(θ
∗) = α(Ωi − ωc) + σ

N∑
j=1

Aij sin(θ∗j − θ
∗
i ) = 0

Use Levenberg-Marquardt algorithm (combination of
Gauss-Newton and gradient descent) to minimize

∑
|Fi |

2

To find critical coupling Kc , we set θ∗i ≡ 0 as initial guess
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Critical coupling Kc

Parameter set: m = 6, p = 0.2, N = 500

No solution can be found for K < Kc = 5.8
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Stable solution

Stable frequency synchronized solution found for:
K = 10, Re(λmax) = −0.083

Narrow spectrum of initial phases

Liudmila Tumash Stability and control of power grids Gipsa-Lab, CNRS 17 / 29



Unstable solution

Unstable frequency synchronized solution found for:
K = 70, Re(λmax) = 2.41

Wide spectrum of initial phases
Behaviour is lost after t = 9 seconds⇒ we can stabilize it by control
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Control: linear quadratic regulator (LQR)
Add external control ui to the Kuramoto system

θ̇i = ωi

ω̇i = αΩi − αωi + σ

N∑
j=1

Aij sin(θj − θi) + ui

Rewrite the linearised matrix system as(
δθ̇

δω̇

)
=

[
0 I

σM −αI

] (
δθ

δω

)
+ Bu, where B =

[
ON

IN

]
∈ R2N×N

Let u = −K
(
δθ

δω

)
. Use LQR to find K minimizing quadratic cost

J(u) =

∞∫
0

∣∣∣∣∣∣
∣∣∣∣∣∣
(
δθ(t)
δω(t)

)∣∣∣∣∣∣
∣∣∣∣∣∣2 +

∣∣∣∣∣∣u(t)
∣∣∣∣∣∣2 dt ⇒ non-positive eigenvalues
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Control of unstable states: stabilization

With control we obtain stable solutions for a large range of initial phases!
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Stochastic system
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Influence of temporal power fluctuations

Strong temporal fluctuations are a signature of renewable energy-based
power grids, e.g., wind turbines

Extended Kuramoto model with noise

mθ̈i + θ̇i = Ωi +
K
Nc

N∑
j=1

Aij sin (θj − θi) +
√

2Dξi(t)

ξi : Gaussian white noise, 〈ξi〉 = 0 and 〈ξi(t)ξj(s)〉 = δijδ(t − s)

D: noise intensity

Our goal: study the influence of noise on synchronization transition
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Synchronization of power grids: small noise intensity
Parameters: m = 6, p = 0.1, N = 500, Ω0 = 2,

√
2D = 5
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Synchronization of power grids: large noise intensity
Parameters: m = 6, p = 0.1, N = 500, Ω0 = 2,

√
2D = 15

Hysteretic region decreases with noise, synchronization occurs earlier
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Synchronization of Italian power grid: low noise
Italian power grid: N = 127 nodes = 34 sources + 93 consumers (342 links)

Noise intensity:
√

2D = 5
(b),(c),(d) K = 30
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Synchronization of Italian power grid: high noise
Noise intensity:

√
2D = 15

(b),(c),(d) K = 30
No constructive role of noise any more!
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Control of noisy Italian power grid
Parameters: K = 70,

√
2D = 5

(a) (b)

(a),(b): control off, λmax = 4.01 (c),(d): control on, λctrl = −0.867
(c) (d)
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Conclusions

Stability analysis enabled to characterize stable and unstable
frequency synchronization solutions (numerical method:
Levenberg-Marquardt)

No solutions exist for small K , and unstable solutions are found for
large spectrum of initial phases

Linear quadratic regulator was applied to stabilize unstable solutions

With noise, hysteretic region shrinks and intermediate states vanish

Noise plays a constructive role on synchronization if spatial disorder
is not too high

Italian grid topology was examined under the influence of noise, and
stabilized for low noise intensities
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Thank you for attention!

Email: Liudmila.Tumash@gipsa-lab.grenoble-inp.fr
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