

Optimal and Almost Optimal Strategies for Rational Agents in a Smart Grid

Alexander Wallis *, Sascha Hauke, Konstantin Ziegler

* University of Applied Sciences Landshut Faculty of Interdisciplinary Studies Landshut, Germany (+49)871 506690 alexander.wallis@haw-landshut.de www.haw-landshut.de

Alexander Wallis, M.Sc.

- *since 2018:* Research Assistant of Prof. Sascha Hauke Research: Machine Learning for Smart Grids.
- 2016-2018: Software Developer for BMW Group and MENTZ GmbH.
- 2008-2016: B.Sc and M.Sc. in Computer Science at UAS Landshut.

University of Applied Sciences Landshut

- Electrical grids are evolving from **centrally managed** critical infrastructure to **distributedly managed** Smart Grids.
- Also the consumer within a power grid is evolving to so-called prosumers:

• **Problem:** More uncertainty is added into the power grid.

➡ To handle this, the interaction between independent rational actors needs to be studied.

• Approach: This falls within the domain of Game Theory (GT).

- We propose a game G to analyze the interactions between prosumers and an electricity market M.
 - Prosumers: set of rational agents A.
 - Electricity Market: provide price per kWh for buying and selling electricity.

• In every time interval *t* the market sends the price to all agents within the game.

- We propose a game G to analyze the interactions between prosumers and an electricity market M.
 - Prosumers: set of rational agents A.
 - Electricity Market: provide price per kWh for buying and selling electricity.

- In every time interval *t* the market sends the price to all agents within the game.
- Possible market structures: Time-Of-Use, Demand-Offer and Hybrid.

- In our game, prosumers are represented as rational agents.
- We categorize the agents based on available production, consumption and storage capacities:

- In our game, prosumers are represented as rational agents.
- We categorize the agents based on available production, consumption and storage capacities:

- In our game, prosumers are represented as rational agents.
- We categorize the agents based on available production, consumption and storage capacities:

- In our game, prosumers are represented as rational agents.
- We categorize the agents based on available production, consumption and storage capacities:

- Production units can be, e.g., photovoltaic, wind turbine, diesel generator.
- Storage units can be, e.g., batteries or electric vehicles.

• Based on the available **properties**, agents are able to perform different **actions** per time step:

Agent		Action			
	Consumption	Production	Storage	Market	Storage
$a_{ m C}$		×	×		×
a_{C^+}		×			
$a_{ m P}$	×		×		×
a_{P^+}	×				
$a_{ m S}$	×	×			
$a_{ m CP}$			×		×
$a_{\rm CP^+}$					

However, not every action is allowed.

• Based on the available **properties**, agents are able to perform different **actions** per time step:

Agent		Action			
	Consumption	Production	Storage	Market	Storage
$a_{ m C}$		×	×		×
a_{C^+}		×			
$a_{ m P}$	×		×		×
a_{P^+}	×				
$a_{ m S}$	×	×			
$a_{ m CP}$			×		×
$a_{\rm CP^+}$			\checkmark		

However, not every action is allowed. Some constraints need to be defined!

• At every time step an agents' consumption $\ell_{C,t}^{(a)}$ needs to be covered:

$$\ell_{C,t}^{(a)} = \ell_{P,t}^{(a)} + \ell_{S,t}^{(a)} + \ell_{M,t}^{(a)}$$

Either by production $\ell_{P,t}^{(a)}$, storage $\ell_{S,t}^{(a)}$ or power grid $\ell_{M,t}^{(a)}$.

• Furthermore, the storage and production units have some bounderies:

$$\begin{aligned} -P_{max}^{(a)} &\leq \ell_{P,t}^{(a)} \leq 0\\ 0 &\leq SOC_t^{(a)} \leq SOC_{max}^{(a)}\\ \ell_{discharge,t}^{(a)} &\leq \ell_{S,t}^{(a)} \leq \ell_{charge,t}^{(a)} \end{aligned}$$

• We **define** power flow to the agent as <u>negativ</u> values, e.g., produced electricity by PV panel.

- Every day an agent choose a storage control strategy σ from a given strategy space S.
- We define two simple strategies with different behaviour.
 - 1. Spillover: Priorities the storage. Overproduced electricity is used to charge the storage. If storage discharge is available, it is used to cover the household consumption.
 - 2. PriceDepending: <u>Priorities the market price</u>. If the price for buying electricity is below a given threshold, always consume from the power grid. Or feed-in if the selling price is above the threshold.

- Every day an agent choose a **storage control strategy** *σ* from a given **strategy space S**.
- We define two simple strategies with different behaviour.
 - 1. Spillover: Priorities the storage. Overproduced electricity is used to charge the storage. If storage discharge is available, it is used to cover the household consumption.
 - 2. PriceDepending: <u>Priorities the market price</u>. If the price for buying electricity is below a given threshold, always consume from the power grid. Or feed-in if the selling price is above the threshold.

How can we evaluate the different strategies?

We define an utility function based on the total amount of money payed or earned c_t by an agent:

$$\pi_{\sigma}^{(a)} = \sum_{t}^{I} \ell_{M,t}^{(a)} \times c_{t}.$$

An rational agent tries to maximize this utility.

- **Nash Equilibrium:** No agent can increase their utility by unilateral strategy change.
- We define the <u>optimal strategies</u> for all agents when the game reaches its Nash Equilibrium.
- To find this equilibrium state, an **iterative approach** is used:

Algorithm 3 Iterative Nash calculation				
Input: Agents A , Strategies S , Iterations i				
1: procedure NASH $(\mathcal{A}, \mathcal{S}, i)$				
2: Initialize Agents A with random Strategy from S				
3: $\operatorname{count} \leftarrow 0$				
4: while count $< i$ do				
5: for all $a \in A$ do				
6: P empty list of length $ S $				
7: for all $\sigma \in S$ do				
8: $\pi(\sigma) \leftarrow \text{CalculatePayoff}(a, \sigma)$				
9: $P \leftarrow P + \pi(\sigma) \triangleright \text{Append } \pi \text{ and } \sigma \text{ to list}$				
10: end for				
11: $\sigma_{\max} \leftarrow \max(P) \triangleright$ Strategy with max. payoff				
12: $a(\sigma) \leftarrow \sigma_{\max} \triangleright \text{Set } \sigma_{\max} \text{ as agent's strategy}$				
13: end for				
14: $\operatorname{count} \leftarrow \operatorname{count} +1$				
15: end while				
16: end procedure				

- Based on the previous determined **optimal strategy**, we calculate the **Price of not knowing the Future**.
- This is the utility difference between optimal strategy and another strategy an almost optimal one.
 Other strategy selection methods: Yesterday's best, Steady (always the same), No Battery Usage.

- Based on the previous determined **optimal strategy**, we calculate the **Price of not knowing the Future**.
- This is the utility difference between optimal strategy and another strategy an almost optimal one.
 Other strategy selection methods: Yesterday's best, Steady (always the same), No Battery Usage.
- Results of our game with three agents for the different market types over a **whole week** MON-SUN:

Agent	Equipment	Strategy Selection	Market			Price of not knowing the future		
			Demand-Offer	Time-of-Use	Hybrid	Demand-Offer	Time-of-Use	Hybrid
$a^{(0)}$	$\begin{split} \mathbf{C} &= 290.87\mathrm{kW}\\ \mathbf{P} &= -73.17\mathrm{kW}\\ \mathbf{P}_{\mathrm{max}} &= 1.7\mathrm{kW}p\\ \mathrm{SOC}_{\mathrm{max}} &= 2\mathrm{kW}\mathrm{h} \end{split}$	Optimal Yesterday Steady No Battery	$\begin{array}{r} -29.45 \\ -29.55 \\ -29.54 \\ -29.82 \end{array}$	$-30, 49 \\ -30, 49 \\ -30.49 \\ -30.86$	-28,28 -28.36 -28.34 -28.63	0.10 0.09 0.37	0 0 0.37	0.08 0.06 0.35
$a^{(1)}$	$\begin{split} \mathbf{C} &= 151.05\mathrm{kW}\\ \mathbf{P} &= -63.83\mathrm{kW}\\ \mathbf{P}_{\mathrm{max}} &= 1.36\mathrm{kW}p\\ \mathrm{SOC}_{\mathrm{max}} &= 2\mathrm{kW}\mathrm{h} \end{split}$	Optimal Yesterday Steady No Battery	-11.19 -11.43 -11.20 -12.73	$-11.76 \\ -11.92 \\ -11.97 \\ -13.17$	-10.88 -11.11 -10.90 -12.25	0.24 0.01 1.59	0.16 0.21 1.41	0.23 0.02 1.37
$a^{(2)}$	$\begin{split} \mathbf{C} &= 170.74 \mathrm{kW} \\ \mathbf{P} &= -68.73 \mathrm{kW} \\ \mathbf{P}_{\max} &= 1.48 \mathrm{kW} p \\ \mathrm{SOC}_{\max} &= 2 \mathrm{kW} \mathrm{h} \end{split}$	Optimal Yesterday Steady No Battery	$-14.32 \\ -14.46 \\ -14.37 \\ -15.56$	$-14.44 \\ -14.44 \\ -14.44 \\ -15.68$	-13.57 -13.70 -13.61 -14.80	0.14 0.05 1.24	0 0 1.24	0.23 0.04 1.23

HOCHSCHULE

- A game of prosumers represented as rational agents is defined.
- These agents are **classified** based on their **properties** that lead to certain **actions**.
- Two basic **strategies** with different utilization goals are given.
- An optimal strategy for an agent within this game is determined by calculating the Nash Equilibrium.
- Three other strategy selection methods are presented.
 The utility difference is defined as the Price of not knowing the Future.

• Future Work:

- Further developments and improvements for optimization process.
- Definition and implementation of broader strategy space.
- Simulation different game settings with more agents and/or whole real-world grid structures.
- Long-term analyses in terms of grid stabilization and reliability.

