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Introduction

Shift to renewable energy sources requires redesign of grid

Progressive shift results in intermittent state

Mix of renewable sources, storage and fossil sources forms Hybrid Renewable
Energy System (HRES) [1]

> can be connected to grid [2][3]

> or standalone systems [4][5]

HRES optimization is researched to design reliable and efficient systems [6]

> Economical and technical aspects are optimized most commonly

> Recently, environmental and socio-political goals are scrutinized
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Introduction

Unpredictable events can disrupt system operation in unforseeable ways [7][8]

> Cyber attacks (e.g., Ukraine, 2015) [9]

> Overloading (e.g., Europe, 2021) [10]

> Natural disasters (e.g., Texas, 2021)

HRES must be resilient and robust to withstand those challenges

Are robustness and resilience considered in HRES optimization?
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Agenda

1. Resilience and robustness definitions

2. Optimization problems

3. Optimization methods

4. Simulation methods

5. Optimization goals

6. Research gap

7. Conclusion
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Resilience definitions

By Arghandeh et al. [11]:

The resilience of a system presented with an unexpected set of disturbances is the
system’s ability to reduce the magnitude and duration of the disruption. A resilient
system downgrades its functionality and alters its structure in an agile way.

of the Presidential Policy Directive 21 of the United States of America [12]:

The ability to prepare for and adapt to changing conditions and withstand and recover
rapidly from disruptions. Resilience includes the ability to withstand and recover from
deliberate attacks, accidents, or naturally occurring threats or incidents.
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Resilience definitions - Summary

Handling of unexpected disturbances

Downgrading of functionality to avoid system collapse

Quick recovery and return to regular operation
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Robustness definition

By Arghandeh et al. [11]:

Robustness is the ability of a system to cope with a given set of disturbances and
maintain its functionality.

Given set of disturbances

Functionality is maintained
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Optimization problems

Formal description [13]:

Minimize/Maximize : F (x) (1)

subject to : gj(x) ≤ 0; j = 1, 2, ...,m , (2)

Multi-objective optimization [14]:

Minimize/Maximize : Fmo(x) = [F1(x),F2(x), ...,Fk(x)] (3)

subject to : gj(x) ≤ 0; j = 1, 2, ...,m , (4)

Two approaches to evaluate multi-objective function

Weighted sum [14]:

Fmo =
k∑

i=1

wi · Fi , (5)
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Multi-objective optimization

Pareto optimality [15]:
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Optimization methods

Practically, any optimization method can be used for HRES optimization

Common ones are:

> Evolutionary Algorithm (EA) [16][17][18][19]

> Particle Swarm Optimization (PSO) [20][4][21][22]

> Ready to use software solutions [23]

> HOMER
> iHOGA
> DER-CAM
> Calliope

Manually implemented optimization methods work with every optimization goal
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Optimization methods

Existing software solutions are more limited [23]:

Optimization method Possible goals

HOMER NPC

Calliope COE

DER-CAM
COE

CO2 emission

iHOGA
NPC

CO2 emission
LLP

May 20, 2021 Lasse Hammer, OFFIS e.V. lasse.hammer@offis.de 12



Simulation methods

Simulation relies on load, wind speed and sun radiation profiles

Mathematical modeling of components is often used [20][16][4][17][21][18]

For every simulation step:

> Calculate output of renewable energy sources

> Compare generation to load

> Store surplus in storage device

> Use stored energy if demand can not be met

> If storage is empty: Use fossil fallback solutions and calculate fuel consumption

Review by Bhandari et al. provides a good overview [24]

Software solutions like HOMER include system simulation

May 20, 2021 Lasse Hammer, OFFIS e.V. lasse.hammer@offis.de 13



Simulation methods

Component failure and other disturbances could be integrated into simulation

None of the reviewed publications incorporate such disturbances

Resilient behavior would require further simulation logic to allow for:

> Downgrading of system functionality

> Recovery of regular operation
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Optimization goals

Target functions for optimizing HRES

> Economic optimization goals

> Technical optimization goals

> Environmental optimization goals

> Socio-Political optimization goals

Equations can be found in corresponding paper of this presentation
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Economic optimization goals

Cost of Energy generation (COE) [3][16][4]

> Describes average annual energy creation expensiveness of system per unit of
energy [USD/kWh]

Levelized Cost of Energy generation (LCOE) averages over entire project
lifespan [20]

Net Present Value (NPV) measures difference between cash inflow and cash
outflow of the system [25]

> Measurement for return of investment [USD]

> Called Net Present Cost (NPC) in HOMER [26]

> Used under that name in several publications [3][27]
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Economic optimization goals

Annualized Cost of System (ACS) [17]

> Annualizes all cost of the entire system [USD]

Initial Capital Cost (ICC) [18]

> Measures the initial investment needed to build the system [USD]

None of the economic optimization goals measure robustness or resilience

Reducing cost is usually contradictory to robustness and resilience
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Technical optimization goals

Loss of Power Supply Probability (LPSP) [20][4][17][22][28]

> Measures probability of system being unable to supply power to meet demand [%]

> Also known as Loss of Load Probability (LLP) [16][27]

> Often used as constraint

> Could measure system robustness and resilience if system is exposed to
disturbances

Minimization of power losses [W h] [2]

> No impact on robustness and resilience
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Environmental optimization goals

Direct emission of CO2 [kg] [27][17]

Carbon Footprint of Energy (CFOE) [20][29]

> Measures all emissions over the system’s lifetime per unit of energy produced
[kgCO2eq/kWh]

> Includes emissions from material harvesting, manufacturing, transporting,
installing, operating, maintaining and disposing

Renewable Energy Ratio (RER) [27] and Renewables Factor (RF) [20]

> Measure ratio of energy created by renewable and conventional sources [%]

No measure of robustness and resilience
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Socio-Political optimization goals

Socio [20]

> Quantifies socio-political impact of a HRES

> Incorporates qualitative and quantitative factors

> Aesthetics
> Employment
> Perceived hazard
> Land requirement and acquisition
> Perceived local environmental impacts
> Local ownership
> Local skills availability
> Local resource availability
> Perceived service ability
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Research gap

Curently, Robustness and resilience is not considered in HRES optimization

Some optimization goals (LPSP, Socio) have the potential to measure
robustness and resilience

However:

> No disturbances are integrated into the simulation

> None of the systems had the ability to downgrade functionality

> No direct measure of robustness or resilience is included

Research gap exists in optimizing HRES with respect to robustness and
resilience
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Conclusion

Overview of HRES optimization

Identified a research gap in robustness and resilience consideration

Planned to address this research gap in the future

> Develop optimization goals that measure robustness and resilience

> Force disturbances upon systems in simulation

> Allow systems to downgrade functionality
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Outlook

Main concept: Adversarial Resilience Learning (ARL) [30][31][8]
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Outlook

Thank you for your attention!

If you have questions, please write an email to lasse.hammer@offis.de!
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