
Implementing

True Serializable
Transactions
THE PYRRHO V7 EXPERIMENT

MALCOLM CROWE, FRITZ LAUX

This tutorial is about DBMS implementation, and

serializable transactions. Specifically, this experiment

looks at whether the extensive use of shareable data

structures with a full-featured relational DBMS

implementation is feasible. Experiments reported to

previous DBKDA conferences seemed to indicate that

such a path was possible, but it was not clear how

practical it would be.

1

 Malcolm Crowe is an Emeritus Professor at the University of the West of Scotland,
where he worked from 1972 (when it was Paisley College of Technology) until
2018.

 He gained a D.Phil. in Mathematics at the University of Oxford in 1979.

 He was appointed head of the Department of Computing in 1985. His funded
research projects before 2001. were on Programming Languages and Cooperative
Work.

 Since 2001 he has worked steadily on PyrrhoDBMS to explore optimistic
technologies for relational databases and this work led to involvement in DBTech,
and a series of papers and other contributions at IARIA conferences with Fritz
Laux, Martti Laiho, and others.

 Prof. Crowe has recently been appointed an IARIA Fellow.

Malcolm Crowe

2

I’m Malcolm Crowe, a retired professor from the
University of the West of Scotland. I started off in
Mathematics, transferred to Computing in 1979, and I
have been working on database implementation since
2001.

2

 Prof. Dr. Fritz Laux was professor (now emeritus) for Database and Information
Systems at Reutlingen University from 1986 - 2015. He holds an MSc (Diplom) and
PhD (Dr. rer. nat.) in Mathematics.

 His research focuses on database modeling and technology, transaction
processing, data warehousing and data analytics. He has published a number of
papers in peer reviewed conferences and journals on the above topics, some of
them have received Best Paper Awards. He is a regular contributor and speaker at
DBKDA.

 Prof. Laux is a co-founder of DBTechNet, an initiative of European universities and
IT-companies to set up a transnational collaboration scheme of higher level
education in Databases. Together with colleagues from 5 European countries he
was conducting projects supported by the European Union on state-of-the-art
teaching and hands-on labs on database technology.

 Prof. Laux received the 2012 Research Award from Reutlingen University and he is
an IARIA fellow.

Fritz Laux

3

Prof. Dr Fritz Laux is a retired professor from Reutlingen
University, also originally a mathematician, who was
appointed Professor of Database and Information
Systems in 1986. His research papers focus on database
modelling and technology, transaction processing, data
warehousing and data analytics, and he is a regular
contributor to DBKDA.

3

This tutorial aims

 To consider usability of methods that help

enforce strict ACID for DBMS

 Some new ideas

 Proof of concept at least

 Our viewpoint: full isolation requires truly

serializable transactions

 All the textbooks say it’s important

 But then start making excuses

 Pyrrho v7 is our second experiment

4

In this tutorial we will consider some methods that help

to enforce strict atomicity, consistency, isolation and

durability for database management systems. There are

some new ideas and the Pyrrho experiment brings proof

of concept.

Our starting point is that full isolation requires truly

serializable transactions.

All database textbooks begin by saying how important

serializability and isolation are, but very quickly settle for

something much less. This is really our second

4

experiment on using shareability.

4

RDBMS Implementation 1

 If we agree that ACID transactions are good

 We should not start to write anything until commit

and then write the whole transaction at once

 We should guarantee consistency by validating

every commit against the current database

 We should enforce actual isolation by not

allowing any user to see transactions in progress

 We should enforce durability by using durable

media (preferably write-once append storage)

 These should be prioritised above speed

and replication
5

If we agree that ACID transactions are good, then:

First, for atomicity and durability we should not write

anything durable until (a) we are sure we wish to commit

and (b) we are ready to write the whole transaction.

Second: before we write anything durable, we should

validate our commit against the current database.

Third, for isolation, we should not allow any user to see

transactions that have not yet been committed.

Fourth, for durability, we should use durable media –

preferably write-once append storage.

5

RDBMS Implementation 2

 Good isolation should mean the transaction

log should show non-overlapping txs

 Can reorder them if there is no conflict

 Then it might be enough to use append

storage for the database file

 And do the reordering as we go!

 But distributed transactions are a problem

 At most 1 remote participant in a transaction

 Or we get the 2-army problem

 Every piece of data has a “transaction master”
6

From the last slide, it seems clear that a database should

record its durable transactions in a non-overlapping

manner.

If transactions in progress overlap in time, they cannot

both commit if they conflict: and if they don’t conflict, it

does not matter which one is recorded first. The simplest

order for writing is that of the transaction commit.

If we are writing some changes that we prepared earlier,

the validation step must ensure that it depends on

nothing that has changed in the meantime, so that our

change can seem to date from the time it was

6

committed rather than first considered. Effectively we

need to reorder overlapping transactions as we commit

them.

These few rules guarantee actual serialization of

transactions for a single transaction log (sometimes

called a single transaction master). It obviously does not

matter where the transactions are coming from.

But if a transaction is trying to commit changes to more

than one transaction log, things are very difficult. If

messages between autonomous actors can get lost, then

inconsistencies are inevitable. One-way dependency can

be implemented with a single remote participant.

6

 In this demonstration, we will see how every Transaction T
consists of a set of elementary operations e1, e2,.. , en .

 Each operation corresponds to a Physical object written to
the transaction log

 Committing this transaction applies the sequence to the
Database D. In reverse mathematical notation

(D)T = (..((D)e1)e2)..)en

 Every Database D is the result of applying a sequence of
transactions to the empty _system Database D0

 The sequence of transactions and their operations is recorded
in the log.

Demo 1: Transaction Log

7

D T D e1 e2 … en

D0 D0 T1 T2 … Tn

Our first demonstration is about the transaction log. The

transaction log defines the contents of the database.

If we think of a transaction commit as comprising a set

of elementary operations e, then the transaction log is

best implemented as a serialization of these events to

the append storage. We can think of these serialized

packets as objects in the physical database. In an object-

oriented programming language, we naturally have a

class of such objects, and we call this class Physical.

So, at the commit point of a transaction, we have a list of

these objects, and the commit has two effects (a)

7

appending them to the storage, (b) modifying the

database so that other users can see.

We can think of each of these elementary operations as

a transformation on the database, to be applied in the

order they are written to the database (so the ordering

within each transaction is preserved). And the

transaction itself is the resulting transformation of the

database.

Any state of the database is thus the result of the entire

sequence of committed transactions, starting from a

known initial database state corresponding to an empty

database.

7

8

C:\PyrrhoDB70\Pyrrho>

Let’s start with a command window, set to whatever folder the distribution is in.
Don’t worry if yours is different.
The Pyrrho distribution folder contains the server and command line processor
executable files, and the PyrrhoLink dll. (You can copy these files to anywhere
convenient.)
This command window will be for the server.

8

9

Let us agree on a folder for the database files. Create a new folder \DATA. To save
space, as here, you can overlap the windows a bit.

9

10

C:\PyrrhoDB70\Pyrrho>

Before we start the server, let’s add a command window for the client, also with the
same folder. We will see it is better to make it wider than normal.

10

11

PyrrhoSvr –d:\DATA

The Pyrrho server is called PyrrhoSvr, and it runs in an

ordinary account with no special privileges. You can copy

it to anywhere convenient.

It is easiest just to use it in a command window. When

we specify the server, we can provide a folder for it to

store database files in.

11

12

-d:\DATA Enter to start up

When prompted, we verify that the options specified are
the ones we want, and click Enter.

12

13

::1:5433

You then need to leave the command window open (but
of course you can minimise it). It can be useful for
diagnostic information if something goes wrong.
On startup, Pyrrho checks that it can access the specified
folder, but places nothing in it. Databases are created by
users, and the transaction log will be stored by the
server on disk, usually in this default folder. It also
announces its TCP/IP request port.

13

14

PyrrhoCmd ab

The simplest way to get Pyrrho to do work for you is to
connect to it using the command line processor
PyrrhoCmd, and when you do that you can specify the
database you are connecting to. It can be a new
database, as here.

14

15

ab

SQL>

And when you give the command, the server

immediately creates an empty database in the database

folder.

This is a transaction log, and at the moment it contains
just 5 bytes, and its opened exclusively by the server, so
that we can’t look at it unless the server is stopped.

15

16

table "Log$"

We can examine the contents of the transaction log with
the table “Log$” statement. Log$ is one of many system
tables for inspecting server internals from SQL. It is
empty at the moment.

16

17

create table author(id int primary key, aname char)

Let’s make a base table in the database ab, by giving a
CREATE TABLE command, and this is the normal syntax in
the SQL standard, but Pyrrho has it own ideas about
primitive types. So CHAR, for example, is an unbounded
character string, and INT is actually a “bigint” – it’s up to
2000 bits

17

18

table author

So, we have created the table, but let’s look at it: of
course it will be empty.

18

19

table "Log$"

23

48

104

34

(1)

Let’s examine how this has been represented in the

transaction log. We can see that there are 7 objects in

the transaction log, all wrapped in a single transaction.

The AUTHOR table is mentioned, and the domains of the

two columns, and the two column names, and the

primary key as defined in the create table request, is

defined there along with its key.

You will notice that the file positions that are here (these
are actual byte positions in the file) are used as unique
identifiers for objects in the database. Pyrrho uses them
throughout: names can be changed but the file position

19

of the definition can’t. So here the table AUTHOR is
referred to as 23, the domain INTEGER is 34, ID is 48, and
that becomes the primary key, and so on. The numbers
in brackets give the ordering of the columns in the table.
The log shows the identity of the user who made the
changes, and the role they were using, but in this
database, no users have been defined yet, so these are
system defaults.

19

20

insert into author values(1,'Dickens'),(2,'Conrad')

table author

2 records affected in ab

Let’s create a couple of authors in this AUTHOR table.
We can do this in a single INSERT statement. And then
we display the table.

20

21

148 1, Dickens

173 2, Conrad

In the transaction log we see that the auto-committed transaction has both records.

21

22

update author set aname='Dickens, Charles' where id=1

1 records affected in ab

1 records affected in ab

delete from author where aname=‘Conrad'

We can update, and delete.

22

23

Finally let’s see the update and delete in the Log.
This completes the demonstration showing the use of the transaction log and the
transaction markers.

23

RDBMS Implementation 3

 If we agree on a globalization strategy

 Then the DBMS format should be neutral

 Not locale or machine specific

 If we agree that arbitrary size limits are bad

 Precision, string length etc

 Then we need to make them huge (e.g. 264)

 If we agree that security is important

 Then we use operating system authentication

 Don’t let the user just type their credentials

24

If we agree on a globalization strategy, then the DBMS

should be neutral, and not specific to a particular

machine, platform, or locale. A database created on one

machine, platform or locale should be usable on

another.

The DBMS should not impose arbitrary size limits on

strings, number of columns etc. Any that are imposed

should be huge.

If we agree that security is important, then we should

use operating system authentication and no other

options. Users should not be simply allowed to say who

24

they are.

24

Pyrrho DBMS

 Pyrrho DBMS always had the above goals

and full feature set including triggers, views

 But ACID’s C and I were not good enough

 For serializable transactions all RDBMS struggle

 The StrongDBMS experiment showed that

using shareable data structures could help

 So we aim in Pyrrho v7 to use shareable

(immutable) data structures

 Wherever possible!

25

Pyrrho DBMS has always had these goals, and a full

feature set including stored procedures, structured

types, triggers, and views.

But it turned out that its consistency and isolation in its

implementation were not good enough, and it was easily

outperformed by StrongDBMS, a much simpler system.

In an artificial test with high concurrency and serializable

transactions, we found that all DBMS were

outperformed by StrongDBMS.

So, in Pyrrho v7, the aim was to re-implement Pyrrho

using a lesson learned from StrongDBMS, that in

25

situations of high transaction concurrency it was best to

use shareable, immutable data structures, for as many

internal structures as possible.

The implementation has been progressing steadily, it is

still in at the alpha stage, but anyone can see the

progress that has been made, as the source code is on

github.

25

Shareable data

 Strings in Java, Python, C# etc are good

 They are immutable

 You have to make a new string to change them

 Illegal to write str[x]='Y';

 For a class to be shareable, all fields must be
read-only and shareable

 Deep initialisation needed in constructors

 Need another constructor to make a change

 Inherited fields need to be set in the :base()
constructor

 Maybe with the help of a static method
26

Let’s quickly review what is meant by shareable data.

Many programming languages currently have shareable

implementations of strings. Specifically, strings in Java,

Python and C# are immutable: if you make a change, you

get a new string, and anyone who had a copy of the

previous version sees no change.

In these systems, it is illegal to modify a string by

assigning to a character position instead you need to use

a library function. The addition operator can be used in

these languages to create a sum of strings. This is

basically the model for shareable data structures.

26

For a class to be shareable, all fields must be read-only

and shareable. Constructors therefore need to perform

deep initialisation, and any change to an existing

structure needs another constructor.

Inherited fields need to be initialised in the base (or

super) constructor.

26

C

 For example, all databases share things

 Predefined types, properties, system tables

 These don’t have to be copied to a new db

 All databases can have the same starting point

Share common elements

27

_system

BA

This is useful for databases because databases share so
many things: predefined types, properties, system
tables. So as mentioned on a previous slide, all
databases have the same starting state.

27

 Database + possible additions, changes

 Not shareable: contains a list of Physical

 Concurrency: several TX in progress

 T2 now commits

 T1 can commit if no conflict with T2 changes

Transactions

28

T3?

DB

T2?T1?
T3?

DB

T2 added

T1?

Even more importantly all transactions can start with the

current state of the database, without cloning or copying

any internal structures. When a transaction starts, it

starts with the shared database state: as it adds

physicals, it transforms. Different transactions will in

general start from different states of the shared

database. In the picture on the slide, we know what the

database state is. We don’t know if any of the

transactions fit on top anymore. In particular, after T2

commits, T1 and/or T3 may no longer be able to commit.

If T1 was able to commit before, then it will still be able

28

to commit provided it has no conflict with T2’s changes.

28

 The rules for this are debatable

 T1 and T2 will not conflict if they affect

different tables or other database objects

 And only read from different tables

 But we can allow them to change different

rows in the same table

 Provided they read different specified rows

 Or even different columns in the same row

 Provided they read different columns

Transaction Conflict

29

The details of what constitutes a conflicting transaction are debatable. Most experts
would agree with some version of the rules on this slide. The first rule is sound
enough, although the condition on reading is very important: we would need to
include things like aggregation in our definition of reading. The first rule is also very
easy to implement, especially if tables are shareable structures, as a simple 64-bit
comparison is sufficient!
For the other rules, we would need to be very clear on what a specified row is, and
the non-existence of a row might only be determined by reading the whole table.
Such debate is beyond the scope of today’s tutorial.

29

 In this demonstration, we will see that during commit of a
Transaction T, we do a validation check

 It ensures that the elementary operations of T can be validly
relocated to follow those of any transaction T´ that has
committed since the start of T

 T planned

 But now

 Relocation amounts to swapping the order of the elementary
operations ei

 Two such cannot be swapped if they conflict

 E.g. They change the same object (write/write conflict)

 There are also tests for read/write conflicts between T and T´

Demo 2: Commit, Conflict

30

D´´ D T´ T

D´ D T

In the second demonstration, we look in detail at the

Commit() method for a transaction, and the detection of

conflicts.

At the start of Transaction Commit, there is validation

check, to ensure that the transaction still fits on the

current shared state of the database, that is, that we

have no conflict with transaction that committed since

our transaction started.

If that is the case, we can relocate all our proposed

changes to come after the committed transactions.

30

The tests for write-write conflicts involve comparing our

list of physicals with those of the other transactions.

For checking read-write conflicts, we collect “read

constraints” when we are making Cursors.

30

31

-d:\DATA

C:\PyrrhoDB70\Pyrrho>

The slide shows two client command windows, the

database folder, and Visual Studio. We will get the Visual

Studio debugger to run the server for us, as this will

enable us to look at the validation step of

Transaction.Commit().

Visual Studio has opened the solution in Pyrrho’s

src\Shared folder, and I have set the database folder to

\DATA for convenience, using the Debug properties of

the PyrrhoSvr project. In the command window that the

start-up creates, I clicked the Enter key to start the

server as in demo 1. I have minimised the server window

31

to get it out of the way.

We confirm that the database folder I have nominated is

empty.

31

32

PyrrhoCmd t10

SQL>

PyrrhoCmd t10

SQL>

The command we want to run in both windows is the
same: PyrrhoCmd t10. Once we do one of them, the
DBMS immediately creates the database as we have
seen in demo 1 - I have hidden the folder window.

32

33

create table RDC(A int primary key,b char)

insert into RDC values(1,'Life,the Universe')

insert into RDC values(2,'Weeks in the year')

table RDC

In the blue window we do some work on the database.
We create a table and insert a couple of records. We can
display the table and see just what we have created
there.

33

34

table RDC

That has all been committed, because we are running in
auto-commit mode, so the green window will pick it up.
It is also running in auto-commit mode, so a new
command starts a new transaction, and it will check the
current state of the database.
This completes the set up for this demo. We will repeat
this part of the demo later.

34

35

begin transaction

SQL-T>

Now we start an explicit transaction in the blue window.
If we just relied on auto-commit mode it is very difficult
to synchronise an overlap of transactions. For a demo, it
works very well to use explicit transactions.
Notice that in an explicit transaction the prompt changes
to SQL-T>. As long as the transaction is running, we will
get these prompts. When the transaction is over, either
because of commit, or rollback, or because we have
done something wrong, it will go back to SQL>.

35

36

delete from RDC where A=42

1 records in transaction t10

SQL-T>

We will request conflicting changes to table RDC in these
two clients. In the blue window, let’s “delete from RDC
where A=42”, to delete the first row. That’s in a
transaction, so nothing has been written to disk yet.

36

37

update RDC set B='The answer to the ultimate
question' where A=42

1 records affected in t10

SQL>

In the green window, we are still in auto-commit mode
and we are going to make an update to the same row,
which will be committed straightaway to disk. This
should make the blue window unable to commit its
transaction because of the conflict.

37

38

Transaction.cs

Pyrrho.Level3.Transaction

Commit(Context cx)

In order to see what happens, let us set a breakpoint in
the debugger, at the start of the Transaction.Commit()
method.

38

39

commit

Then when we issue the commit command in the blue
window, we hit the breakpoint.

39

40

Let us open the Watch window in the debugger, so we
can examine details.

40

41

physicals

(!0=Delete Record 137[23])

Let’s look at the physicals. physicals is the list of Physical records that the Transaction
wishes to commit, and it’s just the single Physical record to delete row 137 in the
database, “Life, the Universe”.

41

42
null

cx.rdC[23]

We will also look at cx.rdC[23], which is to do with the
ReadConstraints for this particular Transaction. In this
case there aren’t any, as this transaction hasn’t read
anything. (In the next experiment we will see it is the
other way round.) Step Over a few times to get to line
208.

42

43

db = databases[name]

new Reader..

new Writer..

We Step Over a few lines to line 208. The validation step
will use the up-to-date copy of the database, as it was
left by the green window. We also open a Reader and a
Writer: a Reader to look at this database, specifically at
the records that have been committed since the start of
our Transaction; and a Writer, where we will prepare the
records that we are going to add to the database if our
validation succeeds.
These are not shareable and are subject to locking

protocols. They also work on the same FileStream.

(Transaction Commit() repeats the validation step after

locking the FilleStream.)

43

44

since = rdr.GetAll();

Step Over to line 213, just after a line saying
“since=rdr.GetAll();” This gets the records that have been
committed to the database since the start of our
transaction. Use the Watch window to examine since.
Right-click, Copy Value, and paste it into a Notepad.

44

45

We can see we have got the transaction marker and the
update that the green window has made.

45

46

Set a breakpoint at line 230. Click Continue.

46

47

The first time we hit this particular line, ph is the

transaction record, which is not very interesting.

Click Continue

47

48

Update 137[23] 45=42,97=The answer to ..

The second time, ph is the Update, and we call the
Conflicts() method. Step Into (Visual Studio breaks in
evaluation of parameters, so step out, and then in
again).

48

49

Delete Record 137[23]

Update

In the Conflicts method, we see that that is our Delete,
and this is the Update. We are looking at the Update
that was done by the green window, and comparing it
with our Delete record.

49

50

Step Over: we reach line 95. For your delete to conflict
with an update, it just means that the position you are
trying to delete matches the position that has been
updated. We can see this is the case, and we will get an
Exception. Just click Continue.

50

51

In this case we find there is a conflict, so let’s just click

Continue

51

52

Record 137 has just been updated

SQL>

We see that we get a complaint back in the blue window

that record 137 has just been updated. The transaction

has been rolled back, as we see from the prompt.

That completes the first experiment that we want to do
in this demonstration.

52

53

For the second part of the demonstration, for simplicity we will restore the state we
had at slide 35: stop the server, delete the database, and repeat the set up to that
point.

53

54

begin transaction

select * from RDC where A=42

This time, when we start an explicit transaction in the
blue window, instead of deleting something, we are
going to select a single row from the RDC table, and we
stick with A=42 again.

54

55

update RDC set B='The product of 6 and 9' where A=42

Just as before, the green window makes an update to
the same row, which is auto-committed. For the reasons
explained earlier, we expect that the blue window will
now be unable to commit.

55

56

Ensure that we still have a break point in the
Transaction.Commit() method.

56

57

commit

On the commit command, we hit the break point. Open
the Watch window again.

57

58
{[23(45,97)[137]]}

{}

If we look at the Watch window that we had before, we
can see that the physicals list is empty this time, but the
read constraint has got something in it. (We haven’t
fetched since yet.)

58

59 Pyrrho.Level3.CheckSpecific

Expand it: we see that this is a CheckSpecific record: the
check field shows the columns and the records that have
been read.

59

60

Since rdC is not empty, let’s put a break point at line 223

60

61
Update 137[23]…

The second time this is hit, ph is the Update that was
made by the green window. (The blue window just
made a select.) Step Into the Check() call (step out of
parameter evaluation, and step in again).

61

62

check.Check(r, ct)

When we step into the ReadConstraint.Check() method,
check is the CheckSpecific, and it checks the record r
that has been committed by the green window. Step
Into check.Check().

62

63

{[137=True]}

recs.Contains(r.defpos)

This looks at the list of records of the CheckSpecific, the
records that were read by the blue window and it
contains the record that has just been updated, so an
exception occurs. Continue from this point.

63

64

Transaction conflict:..

A suitable report is sent to the blue client, and the transaction is rolled back.
This concludes the demonstration of transaction conflict.

64

Shareable structures

 In a programming language with references

 Good idea to make all fields readonly

 If the fields are also immutable

 Then a reference can be safely shared

 So all fields might as well be public

 Also the object can be copied in a single
machine instruction a:=b; with all fields

 No need to clone or deep-copy fields

 Assignment, or snapshot, thread safe

 If we make some changes to the object

 Other fields can remain safely shared65

The next question is how best to implement shareable

data structures. In a programming language based on

references, such as Java, or C#, we can make all fields in

our structure final, or readonly. Then any reference can

be safely shared, and all fields might as well be public

(unless there are confidentiality issues).

If all of the fields are, in turn, also known to be

immutable, then there is no need to clone or copy fields:

copying a pointer to the structure itself gives read-only

access to the whole thing. For example, if the Database

class is shareable, and b is a database, then a:=b is a

65

shareable copy of the whole database (we have just

copied a single 64-bit pointer). This is also guaranteed to

be thread-safe.

Pointers to shareable structures are never updated, but

can be replaced when we have a new version to

reference. If this new version has some changed fields, it

is perfectly fine to continue to use the same pointers for

all the unchanged fields.

65

 [Krijnen and Meertens, 1982]

When we add a node

66

When we add a field located deep in a shareable

structure (e.g. a node to a shareable tree structure), we

will need to construct a single new node at each level

back to the top of the structure. But the magic is that all

the other nodes remain shared between the old and

new versions.

The picture shows a tree of size 7, and updating (that is,

replacing) one leaf node has resulted in just 2 new nodes

being added to the tree. This makes shareable B-Trees

into extremely efficient storage structures.

In tests, we see that for a suitable minimum number of

66

child nodes in the B-Tree, the number of new nodes

required for a single update to a B-Tree of size N is

O(logN), and experimentally, this means that for each

tenfold increase in N, the number of new nodes per

operation roughly doubles.

Note that we also get a new root node every time (this

avoids wearing out flash memory).

66

Why C#?

 It is helpful if the programming language

supports:

 readonly directives (Java has final)

 Generics (Java has these)

 Customizing operators such as +=

 Because a+=b is safer than Add(a,b)

 Easy to forget to use the return value a=Add(a,b)

 Implies strong static typing (so not Java)

 Many languages have “type erasure”

 Also useful to have all references nullable67

Let us choose a popular programming language to

recommend. We have readonly or final directives in C#

and Java, and generics in both.

But C# allows us to create statically-defined operators

such as +=, and this is a great advantage because a+=b

allows no mistake, while it is very easy to think Add(a,b)

adds b to a. (It does, but only if the result of the method

is then assigned to a.)

Java also lacks strong static typing because of type

erasure, and C# allows all references to be nullable by

67

default.

So I prefer C#, which now has been around for 19 years.

Java and Python have been with us for over 30 years.

However, C# provides no syntax for requiring a class to

be shareable.

67

Shareable objects in DBMS

 Let’s make structures in the DBMS shareable

 Database, Transaction

 Table, Index, TableColumn, Procedure, Domain,
Trigger, Check, View, Role

 Query, Executable, RowSet, most Cursor

 TypedValue

 Some classes are NOT shareable:

 Use mutable Context and Activation variables

 Files and HttpRequest are mutable

 Physical objects are for preparing log records

 So cursors that examine logs are not shareable68

What data structures in the DBMS can be made

shareable?

Database itself, and its subclass, Transaction.

Database Objects such as Table, Index, TableColumn,

Procedure, Domain, Trigger, Check, View, Role

Processing objects such as Query, Executable, RowSet,

and their many subclasses;

Cursor and most of its subclasses.

TypedValue and all its subclasses

68

All of these can be made shareable.

Context and Activation cannot be made shareable

because in processing expressions we so often have

intermediate values.

Also, something needs to access system non-shareable

structures such as FileStreams, HttpRequest.

And Physical and its subclasses are used for preparing

objects for the database file, so cursors that examine

logs are not shareable.

68

BTree<K,V> and BList<V>

 BTree is a sort of unbalanced B tree

 += adds (key,value) pair, -= removes a key

 BList is subscriptable subclass where K is int

 But is slower: renumbers on insertion and deletion

 Pyrrho’s implementation of BTree is weird

 Would be a nightmare to prove correct

 But it can be replaced by a better one!

 Traverse up and down using shareable

helpers

ABookmark<K,V> First(), Last();
69

We have already mentioned BTrees. These are used throughout the implementation
and have proved very useful. As mentioned above, BTree<K,V> appears to exhibit
logarithmic behaviour, It is also used for implementation of BList<V>, but BList is
slower in order to ensure that the keys are always 0,1,.. .
If someone can come up with a better (more provably correct) version of BTree, that
would be great!
As described in the StrongDBMS paper, traversal of both BTree and BList is done using
shareable bookmarks, and since last year both allow bidirectional traversal.

69

 Immutable and shareable

internal K key();

internal V value();

 Continue to traverse the tree they start in

internal ABookmark<K,V> Next()

internal ABookmark<K,V> Previous()

 Obviously they don’t see any changes to it

 Base class for all kinds of Cursors

 BTree<K,V> is shareable if K and V are

ABookmark<K,V>

70

This slide give some more detail on Bookmarks. Given a Bookmark we can move to
the Next, or Previous entry in the tree or list (and we get a new Bookmark of course).
They continue to traverse the tree that returned them (which remains immutable).
The Cursor class is a subclass of ABookmark and is the base class for numerous
Cursor classes.
These structures are shareable provided that K and V are shareable.

70

 Base class for objects with properties

internal readonly BTree<long,object> mem;

 The key is used to label properties

internal const long Name = -50;

 Operator + helps with modifications (via +=)

 Just one readonly property

public string name => (string)mem[Name];

 Allows us to define shareable properties

 Basis will be shareable provided all property
values are shareable

 e.g. long, string, DateTime, or a shareable class

Basis

71

A key building block in the implementation is the Basis class, which is the parent of all
of the shareable classes mentioned on slide 69, except TypedValue.
Basis itself contains just one field BTree<long,object> called mem, and has just one
shareable property name. Object is not shareable: but a Basis object will be
shareable if all its property values are.
Its importance comes from the fact that negative keys in mem provide a set of
readonly properties. Each subclass of Basis can define its own property keys.
So Name is -50, and negative keys from -50 to -500 are reserved for such properties.
Keys below -500 are used for predefined types and system tables.
Any subclass of Basis can define operator+ to give useful ways of updating properties.

71

 Basis has an abstract method

abstract Basis New(BTree<long,object> m)

 So a subclass such as Framing must have

public override Basis New(BTree<long,object> m)

{ return new Framing(m); }

 Should also have a way of changing its properties

public static Framing operator+(Framing f,(long,object) x))

{ return (Framing)New(mem + x); }

 Here in mem+x we have the operator+ from slide 69

 Example: if d is declared as Database d;

 Then we can have d += (Name, "Fred");

 += for a Database returns a Database (covariance)

Basis, contd

72

This slide adds some more technical detail for the Basis class and how its subclasses
work.
Every subclass must implement New. Provided every subclass also implements +
similarly to the one shown, we do not need a new constructor for modifying every
kind of field in a shareable subclass.
Then whatever subclass x is declared to be, x+(k,v) will be the same class for any long
k.

72

 DBObject is a subclass of Basis

 has a readonly long field called defpos

 Otherwise uses the Basis machinery for properties

 The defpos is a unique identifier (uid) for
every object in the database

 There are different ranges, e.g.

 negative for system objects, properties etc

 -1L is used for an undefined property

 objects such as tables have a defining position in
the transaction log

 Ranges for objects with shorter lifetimes, e.g.
heap, lexical positions, uncommitted objects

DBObject

73

DBObject is a very useful abstract subclass of Basis. It has one new field defpos,
which is a readonly long. This is where unique identifiers come in: all defpos are uids.
The range of values long.MinValue to long.MaxValue is divided into 6 ranges as
described here. Uids are faster to compare than string identifiers, and easy to come
up with a next value.

73

 Database is a subclass of Basis

 Lots of properties, and uses mem for objects

public BTree<long,object> objects => mem;

 Two important static lists

protected static BTree<string, FileStream> dbfiles;

internal static BTree<string, Database> databases;

 Database has a Load() method to build from the

transaction log on startup

 Transaction is a subclass of Database

 With a Commit method to append its actions to

the database file

Database

74

In the demos we have seen reference to databases and dbfiles. Here we see how they
fit into the overall design.

74

Transaction and B-Tree

75

75

The StrongDBMS paper gives a step-by step account of the way Transaction commit
works. This is basically a BTree implementation for the process described earlier (slide
27).
Suppose we have a database in any starting state D0.
If we start a transaction T0 from this state, initially the T0 is a copy of D0 (i.e. equal
pointers).
As T0 is modified it becomes T1, which shares many nodes with D0, but not all.
D0 also evolves as some other transaction has committed, so D1 has a new root and
some new nodes.
When T1 commits, we get a new database D2 incorporating the latest versions of
everything.

75

 Parser turns SQL statements into Executables

 Execution is on RowSet not Query objects!

 So in v7 we review rowsets at end of parse

 No point in optimising queries

 SELECT <Items> FROM <TableExpression>

 Many RowSet types work on simple columns

 Others allow expressions for items, tables

 Many RowSets are updatable

 Some more with help of adapter functions…

RowSet review

76

Many other DBMS describe their process of “Query

optimisation”.

The result of parsing data manipulation language in Pyrrho v7 is not an optimised
Query but a possibly updatable RowSet.
So instead of Query Optimisation, Pyrrho v7 has RowSet review. In this process as we
will see, filters and aggregations are pushed down from the query level as far as
possible towards the table level.
For example, during Rowset Review we replace selection from views and joins by
selection underlying tables. This leads to a simple implementation of updatable views
and joins.

76

 This demonstration explores the operation of
RowSets

 We will see that some RowSets can be used
for update, insert and delete actions in
addition to queries

 We will see the use of precompilation of
complex database objects

 We will see that RowSet analysis helps
ensure that operations on Views are
implemented as operations on the (possibly
remote) base tables

 But only if the user has the right permissions

Demo 3 : Views

77

This demonstration explores the operation of RowSets

We will see that RowSets can be used for update, insert

and delete actions in addition to queries

We will see the use of precompilation of complex

database objects

We will see that RowSet analysis helps ensure that

operations on Views are implemented as operations on

the (possibly remote) base tables, but only if the user

has the right permissions.

77

78

-d:\DATA

The slide shows a client command window, a glimpse of
a File explorer, and a window for Visual Studio. This

demonstration traces through part of test12 of the PyrrhoTest program using the
Visual Studio debugger. In Visual Studio, open the PyrrhoSvr solution in the
src\Shared folder of the distribution. Set the debug properties of the PyrrhoSvr
project to have -d:\DATA in the Command line arguments.

78

79

Step over properties and operators (Managed only)

This folder is empty

From the Debug menu, select Options.. and ensure that
the “Step over properties and operators (Managed
only)” in Debugging/General is checked. Click OK.

79

80

Now click Start in the debugger, and in the popup command window, click Enter. We

hide this window because it is not going to do anything interesting during this demo.

We want to ensure that the database folder that we are using for our databases is

currently empty before we start the demonstration.

80

81

PyrrhoCmd t12
SQL>

t12

In a command window set to the distribution folder,
start the command line client PyrrhoCmd for database
t12. We see that the database is created by the server.

81

82

create table p(q int primary key,r char,a int)

create view V as select q,r as s,a from p

table "Log$"

In the command window, enter commands to create a
table P with three columns, and a View which uses this
table, renaming a column. We also want to look at the
transaction log.

82

83

PView V 155 select q,r as s,a from p

In the log file, we see that the View definition in the
database file is just recorded as the source of the select
definition of the view.
When the server processes this, on load or on definition,
it creates some compiled components, so that this
statement doesn’t have to be parsed every time it is
used.

83

84

Let’s pause the server so we can look at the precompiled objects. Notice I have
docked the Watch window as a tabbed document.

84

85

Database.databases["t12"].objects[155]

In the Watch window, examine
Database.databases["t12"].objects[155] the View
position. We see that there is a View defined in the
Value.

85

86

framing

Let’s expand that (it takes the server a moment to do it),
and we see that there is a Framing field, and this
contains the compiled components of the definition.

86

87

Right click, and Copy the value of the framing field.

87

88

Open a Notepad window, and click Paste. We see there is
a fair bit in the framing field. We don’t need to look at all
this detail. All we want to do here is to see that the
Framing is in four parts. We add a little white space in
the next slide

88

89

Framing

Data

Result Results

We can see there is a section of objects, a Data section
for the rowsets, and a list of results.

89

90

23 Table P

43 is Q

93 is R alias S

115 is A

Just now, we will delete everything except the first two

lines, which are the details for table P.

90

91

23 (43,93,115)

155 (158,159,160)

A:160[23], Q:158[23], R:159[23], S:159[23]

Let’s also paste the View definition from the Watch
window in here, so that we can see what’s going on. We
notice straightaway that the Domain of the View and the
domain of the table don’t match.
There is a relationship, as the types of the columns
match, but the uids are all different. In the table, they
are of the columns, but in the View these are some of
the compiled objects.

91

92

In Solution Explorer, scroll down to find View at the end
of Level 3, and double-click.

92

93

View.cs

Instance(Context cx, RowSet f)

Targets

Find the Instance() method, and click on it.

93

94

In the Instance() method, set a break point at line 143,

94

95

and also a breakpoint at line 186, at the end of the
Instance method. The View.Instance() method responds
to a reference to the View.

95

96

Click Continue, to allow the server to continue
execution.

96

97

insert into v(s) values('Twenty'),('Thirty')

We are going to use the View definition to insert rows
into the table P. This is obviously not what views are
normally used for, but in this demonstration, we show
that we have updatable views. Views can be used,
provided the permissions are set correctly, to make
modifications to the underlying tables.

97

98

VirtualRowSet #13

When we click Enter for this insert statement, Visual
Studio stops at the break point. The Instance() method
has a RowSet parameter RowSet f (its uid identifies the
position of V in the command): it is a VirtualRowSet.

98

99

f

Use the Watch window to examine f. Right-click and copy
its value into our Notepad.

99

100

23 (43,93,115)

155 (158,159,160)

#13(#15|%0,%1)

5x260+13

5x260+15

7x260+0

7x260+1

This domain seems different again, and the notation needs explanation. As
mentioned, #13 is V’s position in the command, and #15 S’s position. These notations
stand for long integers above 2^60 0x500000000000000d and 0x500000000000000f
respectively, and %0 and %1 are 0x7000000000000000 and 0x7000000000000001
respectively. (We will soon see !0 which is 0x4000000000000000.) These are long
integers unlikely to clash with file positions.

100

101

In the Watch window, expand f to get a closer look at the domain. Paste its value into
the Notepad.

101

102

[#15,Domain CHAR],[%0,..

We notice that not only are the uids different, they are also in a different order.
Continue to the next break point.

102

103

We are at the end of the Instance() method. Now examine the return value from the
Instance() method in the Watch window.

103

104

r SelectedRowSet %7

r is a SelectedRowSet. Paste its value into the Notepad.

104

105

(#15=%7[93],%0=%7[43],%1=%7[115])

This completes the analysis: We can now see that the SelectedRowSet has a map
taking the uids %0, #15, %1 to the table columns 43, 93, 115 of P (not V).
As its name implies, SelectedRowSet is normally used for retrieving data but we can
use it for insert, update and delete also.

105

106

Back in Visual Studio, Step Over

106

107

We see that Instance() was called from View.RowSets().
Step Over

107

108

We are now back in From.RowSets(). Step Over

108

109

This takes us back to Parser.ParseSqlInsert. Step Over
some more until line 6626.

109

110

At line 66626, Step Into Transaction.Execute()

110

111

In Transaction.Execute(), Step Over until line 322.

111

112

At line 322, Step Into Obey()

112

113

In Sqlinsert.Obey, step into Insert()

113

114

This is where the work is done.

Inserting into a base table often involves Triggers.

Triggers are managed by Activations. Step Over the

creation of the TargetActivation, to line 1328.

114

115

At line 1328, use the Watch window to examine ta

115

116

ta TableActivation 39

The source code said this would be a TargetActivation. It is a subclass,
TableActivation. Expand it.

116

117

TransitionRowSet %10

The TableActivation uses a thing called a
TransitionRowSet, a concept defined in the SQL
standard. Copy its value into our Notepad.

117

118

targets: 23=%7 Data: #18

We see the TransitionRowSet knows it has Data, VALUES
is at position 18 of the INSERT statement.

118

119

data.First(ta)

Back in the Insert method, start traversal of the data.
Step Over the call to First().

119

120

Now use the Watch window to examine Cursor b

120

121

b (#15=Twenty), #18

Paste the value of the cursor into the Notepad

121

122

(#15=Twenty) #18

We recognise this value from the INSERT command. Step Over

122

123

ta.EachRow()

Now Step Into EachRow()

123

124

In TableActivation.EachRow(), Step Over twice

124

125

tgc

At line 386, use the Watch window to examine the TargetCursor tgc

125

126

tgc

Paste the value of tgc into the Notepad

126

127

(43=1,93=Twenty,115=Null)

Here we see that Pyrrho’s autokey feature has filled in a
value for the key column 43.

127

128

Step Over a bit more. We have no triggers in this example, so after refreshing the
value of the target cursor, Pyrrho constructs a record. We will stop at line 411.

128

129

Add(r)

At line 411. A Record r has just been constructed.

129

130

r Record !0[23] 43=1,93=Twenty

Use the Watch window to examine r. From now on it is all about installing this record
in the Transaction.

130

131

Back in Visual Studio, Step Into Add(r).

131

132

In Context.Add(), step over a few times, then step Into db.Add() to add our Record to
the Transaction.

132

133

ph Record !0[23]

physicals += (ph.ppos,ph)

In Transaction.Add, we see how the Physical is added to
the physicals list. Step Over line 158.

133

134

At line 159, we are about to call ph.Install(). But let’s use
the Watch window to examine physicals

134

135

((Transaction)cx.db).physicals

(0=Record !0[23]: 43=1,93=Twenty)

It is a list containing the new Record. Step into
ph.Install()

135

136

AddRow(cx)

In Record.Install(), Step over to line 241

136

137

Step Into AddRow().

137

138

new TableRow

x = (Index)..

Record.AddRow is all about building a TableRow and adding it to any indexes that are
around. Step over down to line 231.

138

139

x += (k, defpos)

At line 231, we use one of our addition operators to add the key and record position
to the Index x.

139

140

x .. Rows MTree 1

Hovering over x, we see x has a new value and now
contains one key. Another addition operator installs the
new Index in the transaction.

140

141

After a journey around the loop we reach the return statement at line 234 with the
new TableRow.

141

142

43=1,93=Twenty

Let’s examine now with the Watch window. It has our new values vals. The huge
numbers called ppos etc are all !0, the position for the first uncommitted database
object in the transaction.

142

143

After adding this new row to the table, we add the updated table to the transaction.

143

144

Step Over some more, to get back to EachRow.

144

145

In EachRow() we have just finished Add for our Record. Step over to line 417.

145

146

At line 417 we copy our transaction from the TargetActivation into the parent
Context. (Just an assignment of a 64-bit pointer.)

146

147

That finishes EachRow for this row of the data. Step Over to see the Cursor for the
next row of the data

147

148

(#15=Thirty)

Hovering over b, we recognise the value Thirty here. The same thing will happen for
this row, and then the transaction will Commit(), so just click Continue to finish.

148

149

2 records affected in t12

The successful commit is reported to the client.

149

150

table p

table "Log$"

Confirm the new contents of the table P (this is the real target of the INSERT
statement, not V!)
This completes the demonstration.

150

 Using SQL to access a REST service

 Requires a little extra syntax

CREATE VIEW id OF rowtype AS GET url

 The rowtype is like a table definition

 Column names and domains

 REST data received gets coerced to this type

 The url is supplied as metadata

 Maybe with other properties, e.g. MIME, AGENT

 Could form simple joins with local data

 We call this a RESTView

Accessing Remote Data

151

In the last part of this tutorial we want to demonstrate

how these ideas can be extended to remote views (often

called View-Mediated data Integration).

If we define a remote view, we need to give the domains

of the columns (like in a table definition) that the remote

data received from a REST service can be coerced to.

We also need to be told how to access it, e.g. a URL,

MIME, locale. This can be done with metadata.

Some extra syntax needs to be added to SQL. We call this

RESTView.

151

 Transactions then need some thought

 RFC 7232 is helpful, as it explicitly covers the

lost update problem

 It proposes all HTTP1.1 services return entity-tags

 These can be used for conditional requests

 We can use these in the RESTView

implementation

 But very few external REST services comply

 Pyrrho has a suitable service that does

 An interface called RESTIf tailored for other DBMS

Transactions and RESTview

152

Transactions then need some thought
RFC 7232 is helpful, as it explicitly covers the lost update problem
It proposes all HTTP1.1 services return entity-tags
These can be used for conditional requests
We can use these in the RESTView implementation
But very few real REST services comply
So Pyrrho has a suitable service that does

152

 http[s]://host[:port]/database/role[/table]

 Implemented using HEAD and POST verbs

 Sequence of ;-separated SQL statements

 Changes POSTed at the end of the transaction

 Transaction control uses

 If-Unmodified-Since for transaction start point

 If-Match validates ETags, detects conflicts

 The REST service uses normal SQL statements

 Pyrrho generates HTTP requests from these

 Wherever remote views are referenced

 Rewrites requests to reduce traffic (as in demo 3)

 During the RowSet review stage of processing

REST in a branch transaction

153

Pyrrho offers two styles of interaction over HTTP, one using URL-based discrete
operations, and another using POST to send a sequence of SQL statements to a
remote database.
In both cases any changes should be done as a branch transaction at the commit
point of the main transaction. But as we will see, we accumulate information about
the steps as we go (like read constraints in demo 2), using the HEAD verb to
anticipate the actual change. The information is exchanged using ETags, described
next.
The REST service is more natural for an SQL-based client, and the rewriting process
can take account of different SQL dialects, with metadata about the view identifying
the SQL agent providing the service.

153

 ETags are defined in RFC7232

 "*" is an empty ETag

 Anything else is opaque

 Generated by the service provider

 Not understood by anyone else

 Pyrrho’s have form

Table_uid (',' RowDefPos_uid ',' FilePos_uid)+

 Gives a sequence of specific rows

 Defining position and latest position for each

 Or -1 for the whole table

 And the highwater-mark for the table

Pyrho’s ETags

154

ETags are defined in RFC7232. "*" is an empty ETag, and anything else is opaque, that
is, it is generated by the service provider, and not understood by anyone else.
These slides show some simple examples of Pyrrho’s ETags. They have the form of a
comma-separated list of integers:.
It begins with Table_uid and this is followed by one or more pairs RowDefPos_uid,
FilePos_uid.
Thus an ETag can specify (a) a sequence of specific row occurrences, with the defining
position and latest position for each, or (b) -1 as a wildcard standing for all rows, and
the highwater-mark for the table

154

 For example

[create view W of (e int,f char,g char)
as get etag http://localhost:8180/A/A/D]

 We will see this is an updatable view!

 etag: use the RFC 7232 protocol

 We use Pyrrho’s transactional REST service

 Start this up on the command line:

PyrrhoSvr –d:\DATA +s –H

 -H helps to monitor the HTTP traffic

Demo 4: REST Views

155

In this demonstration we see how the framework

developed in this tutorial applies when the data is

remote.

In particular, we demonstrate an updatable RESTView

where Pyrrho is used for both server and client (over

HTTP, so could be remote).

[create view W of
(e int,f char, g

155

char) as get etag
http://localhost:8
180/A/A/D]
We will see that
this is an
updatable view.
The etag metadata
flag tells Pyrrho
to use RFC 7232.
To switch on Pyrrho’s REST service, we add the +s flag. It

starts an HTTP server (on port 8180 by default).

The –H flag gets diagnostic information in the server

window showing HTTP requests and responses.

155

 Each bank has Roles for Tellers and Access

 Access role can make transfers

 Each bank defines its own accounts

 Using the Teller Role

 And enforces serializable transactions

 Has updatable view for other banks

 Using the Access role

 Uses RFC 7232 to ensure ACID

 For the demo it is kept simple: 2 banks, 1

Server, 1 user identity; but still use Internet

Models Peer-to-Peer Banking

156

We can think of it as a model of peer-to-peer banking, with roles defined for local
accounts and external transfers. Each bank is autonomous, and serializes transactions
on their own accounts in the ordinary database way. For remote accounts they use
ETags and RFC 7232 conditional requests. There could be dozens of banks, and many
users granted these roles.
Users would not actually execute individual SQL statements but use banking
applications that manage auditing, journaling, compliance etc.

156

Uses Internet for Access

157

B

View C

B Accounts

Internet

View B

C Accounts

C

Bank B Bank C

C Access

B Tellers C Tellers

B Access

Each bank defines its own accounts, and creates a view of other banks. Views provide
only a subset of information (e.g. can validate an account number) and can enable
transfers of money in both directions. The diagram shows only a subset of the
functionality required of the banking application: just enough to demonstrate the use
of the ETag mechanism for transfers between local and remote accounts.

157

158

PyrrhoSvr –d:\DATA +s -H

The scenario in this demo is a bank transfer between two banks.
This time the PyrrhoSvr needs to be started up with the command line shown:
PyrrhoSvr –d:\DATA +s –H
We check the database folder is empty and provide blue and green windows for the
two bank clients.

158

159

PyrhoCmd DB

create table AB(id int, bal int)

PyrhoCmd DB

insert into AB values (100,1000),(110,1400)

create role DB

grant DB to "current username"

create view RC .. as get .. 'http://../AC'

To fit things on the slide we use short identifiers: AB for accounts in bank B, etc. We
create an accounts table with two accounts, id 100 with balance 1000, and id 110
with balance 1400.

To make this table accessible over the Internet at least
one role and user needs to be defined, so here we use
the current user on the device.
And we prepare a remote view for us to access the

remote accounts AC in bank C.

The metadata flags etag and milli tell Pyrrho to enforce

RFC 7232 conditional request protocol, but using

millisecond accuracy for the If-Unmodified-Since header.

159

160

create table AC (id int,bal int)

PyrrhoCmd DC

insert into AC values(..)

create role DC

grant DC to "current user"

create view RB .. as get 'http..'

Bank C has a similar set-up.
Database DC is the database for bank C. A user is defined who is authorised to
connect to role DC.
AC is the table of accounts in bank C, and the RESTView RB gives remote access to
accounts in bank B.

160

161

Bank C has accounts table AC

Account 200 has balance 2000

Account 220 has balance 1800

Bank B has accounts table AB

Account 100 has balance 1000

Account 110 has balance 1400

Let’s show the current state of the accounts in the two banks.
In the next steps, bank B will try to transfer £50 to account 200 in bank C, while bank
C tries to transfer £30 from account 200 to an account in bank B.

161

162

begin transaction

update AB set bal=bal-50 where id=100

1 records in transaction DB

Two overlapping transactions will conflict on account 200.
In this slide, bank B starts a transaction and takes £50 from account 100 to be
transferred. Nothing is written to disk yet.
The report on the update makes the point that the new record is in the transaction,
rather than the database.

162

163

begin transaction

update AC set bal=bal-30 where id=200

1 records in transaction DC

Someone in bank C starts a transaction around the same time and takes £30 from
account 200 for another transfer.

163

164

update RC set bal=bal+50 where id=200

ETag: "23,108,108"

0 records in transaction DB

Now the blue teller transfers the £50 to account 200 in bank C using the remote view
RC of their accounts. This is still in the transaction, and nothing has been committed.
However we see Internet activity as bank B checks that 200 is an account in bank C.
we suppose that the balance data will be withheld, because of the permissions, but
bank B does receive an ETag. The response on bank B indicates that the changes are
not for the local bank.
It is hoped that COUNT(*) can (always) be used instead of selecting columns to create
ETags: will become clearer during the next phase of implementation.

164

165

ETag: "23,126,126"

update RB set bal=bal+30 where id=110

0 records in transaction DC

The green teller also starts a transfer, of his £30 from account 200 to account 110,
and receives an ETag for remote account 110.
At this point both tellers are about to commit their transaction. The first to do so will
succeed, but no changes have been made yet.

165

166

commit

1 records affected in DC

update AB..

OK

POST..
If-Match: ..

HEAD

The green teller gets there first, and commits their transaction.
The first step is a HEAD request to verify the ETag sent to the green database is still
valid. (It is.)
Then the update is POSTed to bank B, and on receiving OK from DB, the change is
committed to local account 200 in bank C.
This will invalidate the ETag previously sent to the blue client.
The response to the commit indicates that the change to local account 200 is now
recorded durably in the database.

166

167

commit

ETag validation failure

ETag invalid

HEAD

Sure enough, when the blue client attempts to commit, and sends its change to bank
C, bank C reports that the ETag is invalid, and the transaction is aborted. The failure of
this HEAD roundtrip rolls back the blue transaction entirely.

In this case, if the green client committed first, the local update would fail and a
normal (non-ETag based) transaction conflict condition would be raised.

167

168

table AB

100 unchanged
table AC

200 now 1970
110 now 1430

The teller in bank B can verify that the transfer from account 100 has not occurred,
while bank C’s transaction transferring £30 has been committed in both databases.

168

 A view of a local join with a remote view (it is updatable!)

 Database A:

create table D(e int primary key,f char,g char)

insert into D values (1,'Joe','Soap'), (2,'Betty','Boop')

create role A; grant A to "MALCOLM1\Malcolm"

 Database B:

create view W of (e int, f char, g char) as get
etag milli 'http://localhost:8180/A/A/D'

create table H (e int primary key, k char, m int)

insert into H values (1,'Cleaner',12500), (2,'Manager',31400)

create view V as select * from W natural join H

Demo 4 Extra: RowSet Review

169

As an extra demo, we will use Visual Studio to explore RowSet Review, using as an
example a viewed join of a local table with a remote view. This is part of the test23
suite in the Pyrrho V7 alpha distribution, where it is shown to be updatable.
The example is a simplified system of a company employee database that records job
titles and salaries, but where the employees’ names are stored in another database.

169

170

We start as before with a debug session on Visual Studio where the command line
arguments are again –d:\DATA +s –H. The top row shows a command window for the
clients, the debugger’s server window, a glimpse of a file manager showing the empty
database folder.

170

171

We first create database A with the SQL statements on slide 169.

171

172

Now create the database B using the statements on slide 169. We have also had table
"Log$“ from which we see that view V is at position 419.
Stop the server: we do this for reproducibility, as compiled object uids are different
during the session in which objects are created. Restart the server.

172

173

Find Context.cx in Level4 and double-click it. We are going to place breakpoints in the
Context.Review() method.

173

174

The breakpoint for the start of Context.Review() is at line 717 in Context.cs.

174

175

The breakpoint at the end of the Context.Review() method is at line 843 of
Context.cs.

175

176

PyrrhoCmd B

When we reopen database B, it is loaded into the server, and the compilation process
for the view calls Context.Review()
Click Continue twice to get the normal SQL> prompt.

176

177

We are going to select some items from V.

177

178

select e,f,m from V where e=1

SelectRowSet #7

The given select statement is select e,f,m from V where e=1.
(Note the position of e in this statement: it occurs at position 8, so and the equals
sign of the where condition is at position 28. We will see these numbers later.)
RowSet Review for the select statement stops at the breakpoint we set.
We are going to review the given RowSet r and its sources using the Watch window. It
is a SelectRowSet.

178

179

Source #14SelectRowSet #7

We see the source is a rowSet #14 . To examine other rowSets we need to look at the
data BTree in Context.

179

180

Begin to expand data. RowSet #14 will be near the middle. Expand node root.slots[1].

180

181

Expand the node containing TableRowSet #14

181

182

Open a Notepad window. Scroll to the top and copy the value of r into the Notepad.

182

183

Source: %10
TableRowSet #14

RowSet %10

Expand the node containing the TableRowSet #14 and copy its value into the
Notepad. We see its source is RowSet %10, which we can see in the next node below.

183

184

JoinRowSet %10 First: %18

Second: %15

It is a JoinRowSet, with sources %18 and %15. These will both be in the gtr node of
the data tree.

184

185

OrderedRowSet %18 Source: %9

%18 is an OrderedRowSet, with source %9. Continue with %15.

185

186

OrderedRowSet %15

OrderedRowSet %18 Source: %9

Source: %12

RestRowSet %9

SelectedRowSet %12

It is time for a short cut here: %18 has source %9 which we can see is a RestRowSet,
and %15 has source %12, which is a SelectedRowSet. So let’s pick them up later, at
the end of the Review. Click Continue.

186

187

This is the breakpoint at the end of Review. Return to the Watch window.

187

188

Visual Studio reports changes to all of these RowSets. r will also be out of date, so
repeat the above extraction from the data tree, starting with the modified
SelectRowSet #7 (scroll down for it).

188

189

We see the changed version: copy its value to the Notepad and continue with its
sources etc as we did before.

189

190

RestRowSet %18 .. matches(#8=1)

SelectedRowSet %18 .. matches(%13=1)

where (#28) matches(#8=1)

We see that a number of rowsets that were there before have simply been removed:
there is no need for %9 or %12 and the OrderedRowSets %18 and %15 have been
replaced by RestRowSet %18 and SelectedRowSet %15.
Importantly, the where condition e=1 (where (#28) matches (#8=1)) has been
analysed.
The Review process has noticed that the where-condition collapses both sides of the
join to a single row, so that the orderedrowsets are not required.
And the RestRowSet now has the matches condition #8=1 which will be included in
the HttpRequest to the remote database.
Click Continue.

190

191

During the HttpService, our breakpoint gets hit again. Click Continue twice (before
the timeout!),

191

192

--> 1 rows

where E=1

We get the results of course, but importantly we see that only one row was
requested from the remote database.
(More generally, aggregations can also result in only one row being returned.)
This concludes the demonstration of RowSet Review.

192

 Updatable simple RESTViews are completed

 GET USING to be verified: uses JoinRowSets

 Transaction implementation using RFC 7232

 Combines SQL and HTTP, Data and Web services

 Next Steps in Pyrrho V7 experiment:

 Extend RowSet Review to aggregations, groups

 Verify Role-based security implementation

 Extend to Versioned Object API for Web apps

 Run the TPCC benchmark again

Current Status

193

Pyrrho V7 is still at the alpha stage of development, and as this tutorial demonstrates,
has a working implementation of simple updatable RESTViews. Inserts and Deletes
have been implemented and tested. There is a more complex RESTView mechanism
that managed a set of views with similar properties, implemented as a join. This
implementation is still to be verified at the time of preparation of this tutorial, but it
should follow from the implementation of updatable joins.
Once this is done, the plan is to extend RowSet Review to aggregations and groups
with a more comprehensive set of tests. Next will come verification of the role-based
security implementation, and the versioned Web API.

193

 The approach is practical and safe

 But the ideas are not really new (1982, 2014,..)

 Recommendations for DBMS implementers:

 Use true serializable transactions

 Use shareable data structures

 Implement RowSets not Queries

 Never compromise consistency or isolation

Conclusions

194

Current conclusions from the work are that the approach is practical and safe, and
builds on ideas that have been around for a long time, though not in mainstream
DBMS implementation.
DBMS implementers should adopt some or all of the following recommendations:
serializable transactions, sharable data structures, rowSets not queries; but never
compromise consistency or isolation.

194

 Please send any questions or comments not

answered today

 malcolm.crowe@uws.ac.uk

 I will be running some live Zoom sessions

after the conference

 (But ensure the Subject line of the email

mentions Pyrrho)

Questions?

195

I welcome discussion, and will be happy to provide interactive sessions on request.

195

 Crowe, M.K., Laux, F.: Reconsidering Optimistic
Algorithms for Relational DBMS, DBKDA 2020

 Crowe, M.K., Matalonga, S., Laiho, M.: StrongDBMS:
built from immutable components, DBKDA 2019

 Crowe, M.K., Fyffe, C: Benchmarking StrongDBMS,
Keynote speech, DBKDA 2019

 The Pyrrho Manual, SourceIntro, source code on
Github.com/MalcolmCrowe/ShareableDataStructures/PyrrhoV7alpha

 T. Krijnen, and G. L. T. Meertens, “Making B-Trees
work for B”. Amsterdam: Stichting Mathematisch
Centrum, 1982, Technical Report IW 219/

 https://pyrrhodb/blogspot.com

 Esp: 2017 posts on adapter functions, RESTView

Further reading

196

