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Light Source 
180 PB/year

(ALS-U at Berkeley Lab )

Mountains of Scientific Data Wait for Analysis

Genomics
10 PB/year

High Energy Physics

200 PB/year

Climate
100 EB/year

Data and Picture source: L. Nowell, D., Ushizima, JGI and ALS at LBNL, etc.
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• 15 PB per year kept – sensors capable 
of 140PB/s

• 27 km tunnel

• ~10,000 superconducting magnets

• Operating temperature 1.9 Kevin

• Construction cost:
– US$9Billion

• Power consumption:
~120 MW

Example of Big Data in Science
Large Hadron Collider: to find the god particle

4DBKDA 2021

http://www.smithsonianmag.com/science-nature/how-the-higgs-boson-was-found-4723520/?no-ist


• Physics: 3D magnetic field reconnection
Ø Energy > 10 && 157.654 < x < 1652.441 && −165 < y < −160.025 && −2.5607 < z < 

2.5607
• Climate: atmospheric river

Ø spatial constraint (north America) and attribute constraints (Integrated 
Water Vapor > 2cm))

• Life sciences: Mass Spectrometry Imaging 

Ø spectra selection (xmin:xmax, ymin:ymax, m/z)

Example: Small Amount of Data Often Holds Key

DBKDA 2021 5

How to locate and retrieve these records?



Magnetic reconnection

q Applications: magnetic confinement 
fusion, solar wind

q Data from simulation of trillions of 
ions and electrons

• Example: space weather simulation 
on 120,000 hopper cores @NERSC

– 20,000 MPI tasks * 6 OpenMP 
threads

• ~35TB per timestep

• Total ~350TB

• Example science result

– Histogram of particle energy 
distribution appear following 
the power law

Example: Feature Extraction from Large Data
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Challenge

§How to quickly and easily 
compute the power spectrum from 
350TB of raw data?

Byna et al SC2012

http://dl.acm.org/citation.cfm?id=2389077


Shared
storage

Shared
storage

Example: Online Comparative Analytics

DBKDA 2021 7

Exascale Simulation 
Machine + analysis

Archive

Parallel 
Storage

Simulation Site
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Analysis
Machine

Analysis
Machine
Analysis
Machines

Experiment/observation Site

Analysis Sites

Experiment/observation 
Processing Machine

Archive

(Parallel) Storage

Shared
storage

Indexed subsets

Need to reduce EBs 
and PBs of data, and 
move only TBs from 
simulation sites

Perform some data 
analysis on exascale 
machine
(e.g. in situ pattern 
identification)

Reduce and prepare 
data for further 
exploratory
analysis
(e.g., data mining)
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User-facing 
applications/services

Motifs

Algorithms

Optimized runtime

Hardware abstraction and 
hardware

Scientific 
Data 

Management 
Research

Automated data reorganization
Intelligent data movement
Vertical storage management
Performance analysis

File formats: ExaHDF5, ADIOS
Storage API: GPUDirect, Object 
Store

Indexing/Querying
Tensor based operators for analysis
Data transformation
Distributed workflows

Scientific Data Management in Computer Science
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What BeStMan does
• Unified API for accessing many 

storage systems
• Supports multiple transfer protocols 

and load balancing for multiple 
transfer servers

• Implements Storage Resource 
Management (SRM) interface v2.2, 
and compatible and interoperable 
with other 4 SRM implementations in 
WLCG

Accomplishments
• Open source under BSD license, 

distributed with OSG software
• Scalable performance on many file 

systems and storages, such as Xrootd and 
Hadoop

• Organized an international standard 
through OFG - GFD.129, 2008

• US Patent 8,705,342 B2, 2014. Co-
scheduling of network resource 
provisioning and host-to-host bandwidth 
reservation on high-performance network 
and storage systems

Impacts
• Improve user productivity with a 

unified API for many storage systems
• 43 BeStMan deployments worldwide 

and 5 backend deployments for CERN 
EOS system, as of 2015

• Being used in scientific collaborations 
such as ESGF, OSG, and WLCG

Daily data transfer volume in OSG from 3/1/2015 to 4/15/2015. 
BeStMan is used to transfer 100s TB/day in OSG.

Berkeley Storage Manager (BeStMan)
-- Unified API for Many Storage Systems
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Memory-to-memory data delivery (code coupling)
Transparent workflow execution

WAN Transportation
• FlexPath/EVPath
• DataSpaces
• ICEE

v Fusion plasma blobs
– Lead to loss of energy from 

tokamak plasmas
– Could damage multi-billion 

tokamak 
v Experimental facility may not have 

enough computing power for 
necessary data processing

v Distributed in transient processing
– Make more processing power 

available
– Allow more scientists to participate 

in data analysis and monitor the 
experiment remotely

– Enable scientists to share 
knowledge and expertise

v Lingfei Wu, Alex Sim, Jong Choi, M. 
Churchill, K Wu, S Klasky, CS Chang
10.1109/TBDATA.2016.2599929

Feature Extraction: Near Real Time Detection of Blobs

11

Blobs in fusion reaction
(Source: EPSI project)

Blob trajectory
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https://doi.org/10.1109/TBDATA.2016.2599929


• Problem: given a large data collection, quickly find records satisfying 
user-specified conditions
– Example: in billions of high-energy collision events, find a few 

thousand based on energy level, number of particles and so on
• Solutions

– Algorithmic research: developed new indexing techniques, achieved 
10-100 fold speedup compared with existing methods

– Efficient software: open source (2008), received R&D 100 award
• Science use cases

– Laser Wakefield Particle Accelerator: FastBit acts as an efficient 
back-end for identifying and tracking particles (lower left figure)

– Combustion: FastBit identifies ignition kernels based on user 
specified conditions and tracks evolution of the regions

• Testimonial “FastBit is at least 10x, in many situations 100x, faster than 
current commercial database technologies” – Senior Software Engineer, 
Yahoo!

FastBit Indexing
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1999
Start
research

2008
- R&D100 Award
- Yahoo! began use

2001
WAH

published

2004
WAH
patented

2006
- Query Driven Vis
- Published theory

2007
- FastBit released
- BioSolveIT TrixX

[Wu, et al. 2009]

http://www.iop.org/EJ/abstract/1742-6596/180/1/012053


Key Ideas

Results

• Provide uniform array interface for 
scientific data in commonly used file 
formats, e.g., HDF5, ADIOS, and NetCDF

• Provide efficient searching functionality on 
top of existing user analysis frameworks 
while expand data handling capability and 
improve user productivity

• Indexed and queried a trillion particle
dataset for studying magnetic 
reconnection (or “space weather”)
ü Built index in 10 minutes
ü Located highly energetic particles in 

seconds
• “This is the first time anyone has ever 

queried and visualized 3D particle 
datasets of this size.” -- Homa 
Karimabadi, Physicist from UCSD

Particle distribution of highly energetic particles 
around the region of magnetic reconnection. The 
off-centered and oblong distribution confirms the 
existence of a previously speculated property 
known as agyrotropy.

FastQuery: Parallel Queries on Science Files

DBKDA 2021 13



Scientific Achievement
Reduce the cost of producing output files from a popular general purpose particle-in-cell simulation 
code VPIC for modeling kinetics of charged plasmas in magnetic fields.  Due to the large number of 
particles need to represent plasma in magnetic field, the checkpointing files are very large. This utility 
leverages HDF5 to reduce I/O cost and generate portable self-describing output files.

Significance and Impact
● The VIOU is going to be merged into  the main VPIC repo at github by LANL
● The VPIC has wide applications in particle accelerators, space weather, and so on. 

Research Details
● Explore parameter space for I/O operations: collective I/O, stripe size, number of 

OSTs, multiple (sub-)files, compound data structure, async I/O, and so on.
● Find the parameter combinations to optimize I/O performance

VPIC IO Utilities(VIOU) for Fast Output 
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Developer : Bin Dong, Suren Byna, Kesheng Wu (LBNL)
Other Collaborator: Patrick Kilian, Borb Bird, Fan Guo, Qile Zhang (LANL),Scot Breitenfeld (HDF5)

XDMF based Visual Inspection in 
ParaView and others

https://github.com/lanl/vpic/pull/144


Key Ideas
• Parallel query processing directly on data 

files
• Avoid costly loading of data to database 

management systems
• Leverage efficient FastBit indexes
• Implement database techniques to answer 

queries
Results

• Answering complex queries directly on 
scientific data files

• Complete the PTF query 40X faster than 
PostgreSQL, and 10X faster than Hive, 
the Hadoop database system

• Reduce the data loading time from 45 
minutes to about 1 minute

IMD

Problem
• Astronomy project Palomar Transient 

Factory (PTF) produces ~10GB image 
every 45 minutes

• Currently, data is loaded into a 
PostgreSQL database system

• Loading takes nearly 45 minutes, thus 
preventing real-time data analysis

Direct access 
of files is 

preserved for 
applications 
that need it

SDS query 
service 

combines 
advanced 

indexes with 
query 

planning to 
accelerate 

data access

[Blanas, et al. SIGMOD 2014]

Working Directly with Scientific Data Files is Good for 
Performance

DBKDA 2021 15

http://dl.acm.org/citation.cfm?id=2612185


Scientific Achievement
• I/O latency can slow down applications and waste precious 

computing resources while they wait to move data between storage 
and memory.  Asynchronous I/O in HDF5 hides data movement costs 
by executing I/O operations in the background. 

Significance and Impact
• Applications can use asynchronous I/O without major code changes

• Performance evaluation demonstrates multi-fold speedup for 
applications that read/write data periodically

Research Details
• Asynchronous I/O, developed as an HDF5 VOL connector, uses 

background threads to execute I/O operations asynchronously

• Two modes are supported:
– Implicit mode for unmodified applications, but less performance benefit

– Explicit mode for applications that want more control of I/O operations to 
fully benefit from asynchronous operations

• Asynchronous I/O can hide the majority of application I/O time by 
overlapping it with time spent computing or communicating, making 
I/O visible only at the last time step for write or the first step for read

Asynchronous HDF5 Reduce Output Latency

DBKDA 2021 16
H. Tang, Q. Koziol, S. Byna, J. Ravi, "Transparent Asynchronous Parallel I/O using Background Threads", 

IEEE TPDS Special Section on Innovative R&D toward the Exascale Era, 2021.

Castro/AMReX performance on Cori between the default 
synchronous 5 asynchronous  (explicit mode) writing 5 
timesteps of data . Observed I/O time includes the last 
timestep's write time and the overhead of the asynchronous 
I/O framework for all timesteps. 2-4x improvement seen in 
observed I/O performance.



Scientific Achievement
Newly extended the IDEALEM (Implementation of 
Dynamic Extensible Adaptive Locally Exchangeable 
Measures) algorithm to support 2D and N-dimensional 
data with multidimensional similarity features 

Significance and Impact
We developed extended approaches in statistical 
similarity based data compression algorithm with 
multidimensional pattern matching, which is a promising 
alternative to leading lossy compression algorithms.

Research Details
– Our study extended the algorithm to support multi-dimensional 

measures with Dynamic Time Warp (DTW) and Minimum Jump 
Cost (MJC).

– IDEALEM also offers transforming non-stationary data such as 
phase angle of electricity data into locally stationary block to 
promote exchangeability/similarity

– IDEALEM method supports event/feature detection directly on 
the compressed data.

– IDEALEM can be applied to photos and videos, in addition to 
scientific multidimensional floating point data.

– U.S. Patent No. 10,366,078, 2019

Similarity-based Compression 
with Multidimensional Pattern Matching

O. Del Guercio, R. Orozco, A. Sim, K. Wu, "Similarity-based Compression with 
Multidimensional Pattern Matching", the 2nd International Workshop on 
Systems and Network Telemetry and Analytics (SNTA 2019), 2019. doi: 
10.1145/3322798.3329252

(a) Compression on 3-dimensional power grid 
measurements
(b) Compression on the distributed acoustic sensing 
measurement dataset with 100 dimensions
(c) Compression on the phase angle of electricity 
measurement data, with CR= 56.56
(d) Photo compression sample: Original photo (2560x1440). 
Each of ~3.68 million pixels has three dimensions of color 
(RGB).

(a)

(c)

(b)

(d)

or
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C
R

=1
9.

61

C
R
=7.71

C
R
=57.65
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A < 2 2 < A

• First commercial version
– Model 204, P. O’Neil, 1987

• Easy to build: faster than building B-
trees

• Efficient for querying: only bitwise 
logical operations
– A < 2 à b0 OR b1

– A > 2 à b3 OR b4 OR b5

• Efficient for multi-dimensional 
queries
– Use bitwise operations to combine 

the partial results
• Size: one bit per distinct value per row
– Definition: Cardinality == number 

of distinct values
– Compact for low cardinality 

attributes, say, cardinality < 100
– Worst case: cardinality = N, 

number of rows; index size: N*N 
bits

Basic Bitmap Index

Data
values
0
1
5
3
1
2
0
4
1

1
0
0
0
0
0
1
0
0

0
1
0
0
1
0
0
0
1

0
0
0
0
0
1
0
0
0

0
0
0
1
0
0
0
0
0

0
0
0
0
0
0
0
1
0

0
0
1
0
0
0
0
0
0

=0 =1 =2 =3 =4 =5
b0 b1 b2 b3 b4 b5
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However, There is a Catch

§The efficiency of bitmap indexes 
decreases as the number of distinct 
values increases!

§Definition: column cardinality = 
number of distinct values of a 
column in a dataset

§As column cardinality increase,
§ The index size increases
§ The query responses time increases

§ Some restrictions on using the bitmap index 
include: The indexed columns must be of low 
cardinality—usually with less than 300 distinct 
values. 
§ How and when to use Oracle9i bitmap join 

indexes, Donald Burleson, November 12, 
2002 

§ A value-based bitmap for processing queries on 
low-cardinality data. (Recommended for up to 
1,000 distinct values …
§ Introduction to Adaptive Server IQ, Ch 5, 

Sybase

DBKDA 2021

http://builder.com.com/5100-6388-1051931.html
http://builder.com.com/5171-22-1031829.html
http://sybooks.sybase.com/onlinebooks/group-iq/iqg1250e/iqintro/@Generic__BookTextView/3671


Curse of Cardinality: Evidences

§ Index sides, adapted from a presentation by Hakan Jakobsson, ORACLE, 
1997 (Stanford Database Seminar)

§ 1 million rows (bitmap index compressed with BBC)

§ Sizes of compressed bitmap indexes increase with column cardinality –
this is generally the case, not just in ORACLE, see formula below 
(VLDB’06)
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• Compression
– Byte-aligned Bitmap Code (BBC), used in ORACLE
– Word-Aligned Hybrid (WAH) code, used in FastBit, produce 

optimal bitmap indexes [Wu, et al. TODS 2006]
– In the worst cases, the index sizes are still larger than B-trees

• Encoding [Wu, et al. TODS 2010]
– Many bitmap encoding schemes exist, the most compact is the 

binary encoding
– The binary encoded index (bit-slice index) is slower than the 

projection index in the worst case
• Binning

– Designed to handle high-cardinality data, but needs to scan raw 
data, which makes it slower than the projection index

– Solution: Order-preserving Bin-based Clustering (OrBiC) [Wu, et al, 
2008]

Ways to Improve Bitmap Indexes
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http://doi.acm.org/10.1145/1132863.1132864
http://dx.doi.org/10.1145/1670243.1670245
http://link.springer.com/chapter/10.1007/978-3-540-69497-7_23


FastBit Technology 1: Compression

10000000000000000000011100000000000000000000000000000……………….00000000000000000000000000000001111111111111111111111111

Example: 2015 bits

Main Idea: Use run-length-encoding, but...
partition bits into 31-bit groups [not 32 bit] on 32-bit machines

31 bits 31 bits(62 groups skipped) …31 bits

• Name: Word-Aligned Hybrid (WAH) code (US patent)
• Key features: WAH is compute-efficient

ØUses the run-length encoding (simple)
ØAllows operations directly on compressed bitmaps
ØNever breaks any words into smaller pieces during operations
ØWorst case index size 4N words, not N*N (without compression)

Encode each group using one 32-bit word
31-bit count=63

Merge neighboring groups with identical bits

31 literal bits0 1 0 31 literal bits0

32  bits

[Wu, Otoo, and Shoshani 2006]
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http://freepatentsonline.com/6831575.html
http://dx.doi.org/10.1145/1132863.1132864


• In the worst case, query response time is a linear function of the 
number of hits, H

• WAH Compressed indexes are optimal for one-dimensional range 
queries, search time O(H)

WAH Compressed Index Is Optimal

24

WAH
Pentium 4, 2.8 GHz
40 MB/s disk array
100 M synthetic records

BBC

Optimality
means

straight lineB
etter

Expand this area
DBKDA 2021



• WAH compressed indexes are 10X faster than DBMS, 
5X faster than our own version of BBC

• Based on 12 most queried variables from a STAR dataset with 2.2 million 
rows, average column cardinality 222,000

Compressed Index Performance

2-attribute queries 5-attribute queries

DBKDA 2021 25



• Binning reduce the number of bitmaps 
used in an index, which reduces index 
size and query processing time

• Binning is also useful for building multi-
level indexes (to be described next)

• Challenge: if query falls in the middle of 
edge bins

• Solution: Order-preserving Bin-based 
Clustering (OrBiC)

• 5x speedup for searching bins

FastBit Technology 2: Binning
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Ø Prove theoretically that 
the second level needs 
only a small number of 
bins (15 ~ 50 
depending on the 
skewness of the data)

Ø Only two levels are 
needed

Ø Result: 5X speedup on 
average

Ø Combined with WAH, 
could achieve 50X 
speedup

FastBit Technology 3: Multi-Level Encoding

DBKDA 2021 27

10X faster

[Wu, Shoshani and Stockinger 2010]

http://doi.acm.org/10.1145/1670243.1670245


• From: Jochen Schlosser [schlosser@zbh.uni-
hamburg.de]
University of Hamburg

• Application: Structure-based virtual screening (J. 
Chem. Infor. Mod., 2009)

• Specification of the descriptor as triangle 
geometry
– Types of interaction centers
– Triangle side lengths
– Interaction directions
– 80 bulk dimensions

• Receptors
– Receptor descriptors are generated similarly
– Using complementary information where 

necessary
• Use of pharmacophore constraints on receptor 

triangles
– Reduces number of queries
– Improved query selectivity because the 

pharmacophore tends to be inside the 
protein cavity

– 250X faster than previous docking software

FastBit Application Example:
Molecular Docking

DBKDA 2021 28

http://pubs.acs.org/doi/pdf/10.1021/ci9000212


• Concentrate on maximal matches only
– Don’t list small matches

• Progressively match more organisms
– Build up answers gradually, eliminate empty 

combinations

• Performance
– Match 161 organisms in 10 seconds on 8000 

genomes and 3.3 million cassettes

• Available in IMG <https://img.jgi.doe.gov/> 
(Romosan et al.)

Gene Context Analysis Query Processing:
Timed out with DBMS; but <10 s with FastBit

29

C1.1 1000111000000010

C1.2 1000001000000100

C1.3 1000000001100000

C2.1 1111111000000100

C2.2 0000000000111000

C3.2 0000001000000100

1000111000000000 C1.1 C2.1

0000001000000100 C1.2 C2.1

0000001000000100 C2.1

Step1: only 2 out of 6 combinations qualify

C1.2 C3.2

Step 2: only one combination qualifies

DBKDA 2021

https://doi.org/10.1145/2484838.2484856
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Parallelizing Scientific Data Analysis is Difficult

HDF5/NetCDF/ADIOS
/ ...

MPI / MPI-IO / ...

Lustre / PVFS / ...

Linux / Ext4 / ..

Data in Storage System

D
ee

p 
So

ft
w

ar
e 

St
ac

k

Many Computing Nodes 

… ...

Data Management Tasks
Parallelization 

Insight

Myriad Analysis Operations
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Data Parallel Programming: generic programming abstraction for 
various data analysis operations + execution engine to hide complex data 
management tasks

Commercial Big Data Systems Simplify 
Parallel Computing

User-defined 
Operations

Programming Model
e.g., MapReduce

Hardware and 
Software

Generic Operators

Abstract Data Type

e.g.,
Map, Reduce

e.g.,
Key-value 
Tuple 

E.g., Searching, PageRank, SVD, Sorting, TF-IDF, 
BFS, ... 

e.g., desktop,  grids, multi-cluster, volunteer computing 
environments, cloud environments, mobile environment, ...

DBKDA 2021 32



Example:
Convolution on a 2 by 4 2D Tensor

Kernel is 2 by 2

Challenge: Many Operations are Hard in 
MapReduce

1. Mismatched Data Model
-- Convert Tensor to KV list at Map 

stage

2. Expensive reduce operations
-- Duplicate KV for Reduce stage

Additional examples for Connected Component Labeling (CCL), gradient 
computing, and interpolation are available in Dong et al 2019

DBKDA 2021 33

https://doi.org/10.1007/978-3-030-20656-7_4


1. MPI based Single Program Multiple Data (SPMD) Pattern 

2. Directly on Scientific Data Formats, e.g., HDF5

3. Manual/auto-chunking & ghost zone building

4. Efficient Parallel I/O

SLOPE Execution Engine in FasTensor

DBKDA 2021 34



1. Cori Supercomputer at NERSC* with over 2400 nodes

2. Peer systems for comparison 

Apache Spark, TensorFlow, C++ Imp (hand optimized)

3. Workload

Synthetic Workloads: 2 layers CNN with forward steps

Real Applications Workloads: CAMR5, VPIC, BISICLES

*National Energy Research Scientific Computing Center  https://www.nersc.gov/systems/cori/

Evaluations

DBKDA 2021 35

https://www.nersc.gov/systems/cori/


Synthetic Workloads: 2 layers CNN with forward steps on a 64K by 64K 
2D array

Comparing SLOPE, TensorFlow, Spark

Single CPU Core

DBKDA 2021 36



CAM5
768 × 1152 2D array

3 Layers CNN (CONV, ReLU, Pooling)

SLOPE is up to 106X faster on real-applications

VPIC
512 x 256 x 256 3D filed array + 263 GB particle data

Gradient and interpolation
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BISICLES
12288 x 12288 2D array
Connected Component Labeling 
(CCL)

SLOPE advanced features
- iterate over many invocation of 

UDFs
- distributed array cache
- complex execution patterns: 

forward and backward scan
- in-place modifications of arrays

SLOPE could be 92,824X faster
# of steps to convergence

w/o advanced feature 10868

w/ advanced feature 8
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Scientific Achievement
Distributed acoustic sensing (DAS) records strain or 
strain-rate along fiber-optic cables in subsurface at 
high frequency and large geophysical scale, 
producing mounts of data. This tool uses FasTensor
to implement a variety of data analysis operations 
on high-performance computing systems for fast 
event detection. 

Significance and Impact
Reduced the execution time of data analysis pipeline to 
identify earthquake from a set of distributed acoustic 
sensing data from weeks to seconds

Research Details
Extend Fastensor to support DAS specific data analysis 
operations

- DasLib:  sequential DAS data analysis operation
- Multithreaded Fastensor: auto-parallel DasLib

with less data duplications
- DAS Storage Engine: efficient access to  DAS data 

scattered among many small files
- Software available at http://sdm.lbl.gov/fastensor

DASSA: FasTensor for Distributed Acoustic Sensing

DBKDA 2021 39

B. Dong, V. R. Tribaldos, X. Xing, S. Byna, J. Ajo-Franklin and K. Wu, "DASSA: Parallel DAS 
Data Storage and Analysis for Subsurface Event Detection," IPDPS 2020,
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q Evaluations on Edison with tasks from analysis of magnetic 
reconnection (from Karimabadi, UCSD)

q 2TB (HDF5 file) with seven 1D particle attributes

q Three 12 GB files (Binary) with 3D magnetic field

Scientific Data Management Means Many Things

DBKDA 2021 41
Query Running Time Time of the whole data analysis lifecycle

Data Analysis Challenges FasTensor Technologies
Heterogamous scientific data formats Lightweight Two-level Metadata Model 

Independent data organization cross data sets MDBin: Multi-dimensional Array Binning 

Common scientific operations (e.g., interpolation)
turn into complex SQL expression (e.g., 9-way join)

SCJoin: Spatially Clustered Join algorithm
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On average, SDS is 143.1X faster 

[Dong, Byna, Wu, 2015]

http://dx.doi.org/10.1109/BigData.2015.7363778


q Commercial Big Data tools may not match scientific application 

requirements, e.g., key-value pair data model can’t easily represent 

multidimensional arrays, map-reduce not effective for some common 

operations

q Processing exascale data requires many different data management 

tools, e.g., FastBit, FasTensor, HDF5, ADIOS, …

q Exabytes of scientific data stored in files, directly working with these 

files is important to achieving good performance

q Right tools could make a big difference: up to 92,824X in one example

q A lot more to be done: (1) beyond simply arrays, such as AMR data, (2) 

GPU and accelerators, (3) deep storage integration, (4) distributed 

workflows, (5) supporting machine learning, …

Summary
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Lustre GPFS Remote DAOS Object stores…
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FastBit software http://sdm.lbl.gov/fastbit
FasTensor software http://sdm.lbl.gov/fastensor

Thanks!
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