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Introduction scch {}

* Increasing amount of recorded data in Industry 4.0 settings
 Higher Level of operational efficiency, productivity, automatization and flexibility

» Customization of applications with small batch-sizes
* Flexible adaptations and optimizations

» Expanding and alternating environments

* Developed with Multi-Task setting in mind
* High tool and workpiece variability

» Self-learning and adaptive systems for predictions, predictive maintenance, outlier detection
» Support for Domain Adaptation is required



Introduction - Problem scch {}

» Offline Learning not sufficient enough
* High Training costs
* Old Data not available

* Online Learning
» Goal: Gain and retain knowledge

 Problem: Catastrophic Forgetting
* Forgetting or fading of previously learned knowledge due to the Stability-Plasticity Dilemma

Offline/Base Data Model Production
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Introduction - Contribution scch {}

* Framework
 Easing of the path for the development of models, especially in Industry 4.0 applications
« High variety of configuration possibilities for various online learning scenarios
* Model selection (Random Forest, Linear Regression, ...)
* Training process

» Usage of an offline model as a base
 Online learning cycles for model adaptations

» Experimental setting due to amount of configurations
« Possibility to find best fitting configurations
« Visualizations of (intermediate) results

 Existing Frameworks are rather restricted
» Use-case specific
» Not expandable



Relevant Deep Learning Topics

« Catastrophic Forgetting
« Stability-Plasticity Dilemma

« Plasticity for integration of new knowledge
« Stability for retaining old knowledge

« Various approaches to solve Catastrophic Forgetting
* Memory-based approaches

» Elastic Weight Consolidation (EWC) = ":“"a"v
 Adapted optimizers and loss calculation [ =

Low error for old tasks

Low error for new task
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* Intersection point between model and learning algorithm
 Stores model

» Enables equal treatment of models

» Storage of additional information
* Prediction results

* Calculation methods for metrics
« root mean squared error (RMSE), maximum absolute error (MaxAE), sigma, sigma2 and R2

 Currently supported wrapper models
* Neural networks

* Linear regression
* Random Forest
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Framework - Structure scch {}

* Multi-Task Learning
» Training of similar tasks in one model to save time and even enhance results

« Common knowledge base for all tasks
» Task-specific layers at the top of model

\ task, }—F
task; }—»
— Shared Layers 4

Inputs Processing Output

« Domain Adaptation
 Learning a model based on a source domain that performs sufficiently well on different but related target

domains
 Useful for different machine/tool setting or with different materials
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Framework — Configurations scch {}

CONFIG = {
. . o "App_Scenl ": {
» Configuration Dictionary "TASK_DICT”: {
. . "task_ 1 ': [(1, 50, False),
* Different scenarios (2, 20, True, True),
. ) ] (3., 10; Balse, True)]
* Multiple tasks represent a Multi-Task scenario "task_2 ’: [(2. 40, False),
. . . (3. 30, Trde., Trie)]
« Tasks consists of various time-steps }
« Nr of time step # additional dictionary entries
) }
* Percentage of used data ‘App_Scen2': { _
» Flag for batch-wise or element-wise adding } # mther seemarlo enfrles
¥
Training Test
r-—--—-r—r——H—""FTFFF--"-""-"""""""=""="=""""""=""="—""""—"—— | r—-—————-———=——-=

Task 2

Zeitliche Darstellung der Konfiguration (wann task 1 wann task 2, ...)
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Framework — Configurations

» Optimizer and Loss Configuration
« Stochastic Gradient Descent (Optimizer)

 Noisy Natural Gradient Descent (Optimizer)
* Mean Squared Error (Loss)

* Learning without Forgetting (Loss)

» Elastic Weight Consolidation (Loss)

» Source and target columns
« Data loading

* Definition of starting and ending step

scch {}
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Framework — Learning Algorithm scch {}
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Framework — Visualizations

* Visualization according to configuration

* Results also stored in Excel

» Optional anonymization of results for sensitive use-cases
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Experiments — Set Up scch {}

» Dataset consists of three different resin recipes provided by the Austrian company Metadynea
» 5639 samples per recipe

» 2692 features

« Sample Id, sample time, date, batch, spectrum light intensity, process pressure, process temperature, consendation
time

« Target is a temperature in °C

 Data is partitioned in various time-steps

Training Test

Recipe 166
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Experiments - Results scch {}

|| Train/Test | Step 1 (Offline) | Step 2 (Online) | Step 3 (Online) | Step 4 (Online) | Step 5 (Online)

FF S with SGD/MSE Train 10.73 13.49 10.15 7.80 9.11
FF S with SGD/MSE Test 8.85 0.93 9.97 6.65 7.26
FF S with NGD/MSE Train 12.87 12.7 0.81 8.32 8.28
FF S with NGD/MSE Test 8.35 11.34 7.36 7.15 6.34
FF M with SGD/MSE Train 13.24 11.76 10.30 10.38 9.19
FF M with SGD/MSE Test 12.59 13.32 10.18 10.31 8.99
FF M with SGD/LwF Train 10.72 13.71 10.15 7.08 9.11
FF M with SGD/LwF Test 8.85 13.24 2.97 6.65 6.27
FF M with SGD/EWC Train 19.13 18.47 20.01 18.78 21.46
FF M with SGD/EWC Test 17.19 17.46 18.67 18.13 20.33
FF M with NGD/MSE Train 10.91 12.42 9.80 10.02 10.50
FF M with NGD/MSE Test 10.64 11.43 9.48 9.71 9.26
FF M with NGD/LwF Train 12.87 12.70 0.81 8.32 8.20
FF M with NGD/LwF Test 9.33 11.34 7.36 7.16 6.29
Linear Regression Train 2.06E-11 1.89 5.98 5.45 5.8

Linear Regression Test 41.92 21.34 9.54 7.32 7.47
Random Forest Train 6.44 2.30 4.67 543 9.78
Random Forest Test 12.14 10.28 10.12 10.10 10.13
Elastic Net Train 14.12 12.69 11.50 10.32 10.75
Elastic Net Test 10.32 10.37 10.10 10.05 10.08
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Conclusion & Future Work scch {}

* Presentation of a framework which is able to improve offline learning models with online data
 High configurability
« Various methods to avoid Catastrophic Forgetting

* Flexible and adaptive regarding new use-cases and use-case adaptations
 Especially in Multi-Task settings
« Easily be extended regarding supported models and methods

 Future work
* Integration of censored and truncated data

* Integration of more flexible neural network structures
» Automatization of optimal method selection
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