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Introduction

• Increasing amount of recorded data in Industry 4.0 settings
• Higher Level of operational efficiency, productivity, automatization and flexibility

• Customization of applications with small batch-sizes
• Flexible adaptations and optimizations

• Expanding and alternating environments

• Developed with Multi-Task setting in mind
• High tool and workpiece variability

• Self-learning and adaptive systems for predictions, predictive maintenance, outlier detection
• Support for Domain Adaptation is required
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Introduction - Problem

• Offline Learning not sufficient enough
• High Training costs

• Old Data not available

• Online Learning
• Goal: Gain and retain knowledge

• Problem: Catastrophic Forgetting
• Forgetting or fading of previously learned knowledge due to the Stability-Plasticity Dilemma
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Introduction - Contribution

• Framework
• Easing of the path for the development of models, especially in Industry 4.0 applications

• High variety of configuration possibilities for various online learning scenarios
• Model selection (Random Forest, Linear Regression, ...)

• Training process
• Usage of an offline model as a base
• Online learning cycles for model adaptations

• Experimental setting due to amount of configurations
• Possibility to find best fitting configurations

• Visualizations of (intermediate) results

• Existing Frameworks are rather restricted
• Use-case specific

• Not expandable
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Relevant Deep Learning Topics

• Catastrophic Forgetting
• Stability-Plasticity Dilemma 

• Plasticity for integration of new knowledge
• Stability for retaining old knowledge

• Various approaches to solve Catastrophic Forgetting
• Memory-based approaches

• Elastic Weight Consolidation (EWC)

• Adapted optimizers and loss calculation
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Framework - Wrapper

• Intersection point between model and learning algorithm
• Stores model 

• Enables equal treatment of models

• Storage of additional information
• Prediction results

• Calculation methods for metrics
• root mean squared error (RMSE), maximum absolute error (MaxAE), sigma, sigma2 and R2 

• Currently supported wrapper models
• Neural networks

• Linear regression

• Random Forest
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Framework - Structure

• Multi-Task Learning
• Training of similar tasks in one model to save time and even enhance results

• Common knowledge base for all tasks

• Task-specific layers at the top of model

• Domain Adaptation
• Learning a model based on a source domain that performs sufficiently well on different but related target

domains

• Useful for different machine/tool setting or with different materials
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Framework – Configurations

• Configuration Dictionary
• Different scenarios

• Multiple tasks represent a Multi-Task scenario

• Tasks consists of various time-steps
• Nr of time-step
• Percentage of used data
• Flag for batch-wise or element-wise adding
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Framework – Configurations

• Optimizer and Loss Configuration
• Stochastic Gradient Descent (Optimizer)

• Noisy Natural Gradient Descent (Optimizer)

• Mean Squared Error (Loss)

• Learning without Forgetting (Loss)

• Elastic Weight Consolidation (Loss)

• Source and target columns

• Data loading

• Definition of starting and ending step
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Framework – Learning Algorithm
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Framework – Visualizations

• Visualization according to configuration

• Results also stored in Excel 

• Optional anonymization of results for sensitive use-cases
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Experiments – Set Up

• Dataset consists of three different resin recipes provided by the Austrian company Metadynea
• 5639 samples per recipe

• 2692 features
• Sample Id, sample time, date, batch, spectrum light intensity, process pressure, process temperature, consendation

time 

• Target is a temperature in °C

• Data is partitioned in various time-steps
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Experiments - Results
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Conclusion & Future Work

• Presentation of a framework which is able to improve offline learning models with online data
• High configurability

• Various methods to avoid Catastrophic Forgetting

• Flexible and adaptive regarding new use-cases and use-case adaptations
• Especially in Multi-Task settings

• Easily be extended regarding supported models and methods

• Future work
• Integration of censored and truncated data

• Integration of more flexible neural network structures

• Automatization of optimal method selection
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