

ANALYSIS OF MINIMAL CLEARANCE AND ALGORITHM SELECTION

EFFECT ON PATH PLANNING FOR AUTONOMOUS SYSTEMS

Ronald Ponguillo-Intriago, Payam Khazaelpour, Ignacio Querol Puchal, Silvio Semanjski, Daniel Ochoa, Sidharta Gautama, Ivana Semanjski

Presenter: Ronald Ponguillo Intriago/ Ghent University, Flanders Make ronaldalberto.ponguillointriago@ugent.be

The Tenth International Conference on Data Analytics **DATA ANALYTICS 2021** October 03, 2021, to October 07, 2021 - Barcelona, Spain

Ronald Ponguillo Intriago

PhD. Researcher Faculty of Engineering and Architecture, Department of Industrial Systems Engineering and **Product Design** Ghent University, Belgium

Background:

- Electronics Engineering,

Research interests:

Deep Learning

Actual Projects working:

- mining using autonomous robots
- aerial vehicles in urban mobility

Master in Management Information Systems

Autonomous Robotics, Optmization Algorithms,

Path planning algorithms to optimize Deep sea

Global path planning for autonomous unmanned

2

– MOTIVATION

– FUNDAMENTAL CONCEPTS

– RESULTS

– CONCLUSION AND FUTURE WORK

MOTIVATION

- Path Planning is a central topic in autonomous robotics
- There are many path planning algorithms in the literature — The goal is to find the best path between the starting and goal point.
- There are some conditions for which these algorithms fail or become less efficient in finding the searched path
- Is it possible to determine under what conditions these algorithms tend to fail or become less robust?
 - There are no studies that analyze the effects of constraints using data analysis

FUNDAMENTAL CONCEPTS. **DISCRETE REPRESENTATION OF THE MAP**

R. Ponguillo-Intriago, DATA ANALYTICS 2021, October 03-07, 2021 - Barcelona, Spain

5

FUNDAMENTAL CONCEPTS. CLEARANCE CONCEPT

- Configuration space

– Obstacle Space

- Free Space

R. Ponguillo-Intriago, DATA ANALYTICS 2021, October 03-07, 2021 - Barcelona, Spain

– Space among some obstacles

FUNDAMENTAL CONCEPTS. METRICS

Metrics used in the study

- Path length.- Length of the path obtained by the algorithm
- Number of Iteration.- It is the number of processes executed in the nodes of the free space during the task of finding the path between the start node and the destination.

RESULTS. #OBSTACLES EFFECTS

Influence of # Obstacles on Path Length

RESULTS. #OBSTACLES EFFECTS

Influence of # Obstacles on Iteration

RESULTS. CLEARANCE EFFECTS

Influence of Clearance on Path Length

RESULTS. CLEARANCE EFFECTS

Influence of Clearance on Iteartion

RESULTS. IMMUNITY ANALYSIS

TABLE II

SUMMARY OF ALGORITHM IMMUNITY WITH THE CONSTRAINTS

Clearance Immunity		# Obstacles Immunity	
Path Length	Iteration	Path Length	Iteration
no	yes	no	no
no	no	no	no
no	no	no	no
no	no	no	no
no	no	no	no
no	no	no	no
no	no	no	no
no	no	no	no
no	no	no	no
no	no	no	no
no	no	no	no
no	no	no	no
	Path Length n0 n0 n0 n0	Path LengthIterationNOYesNO	Path LengthIterationPath Lengthnoyesno

RESULTS. CORRELATIONS

TABLE III TYPE OF CORRELATION AMONG (CLEARANCE, PATH_LENGTH, ITERATION) AND (# OBSTACLES, PATH_LENGTH, ITERATION). SIGN - IS NEGATIVE, + IS POSITIVE AND X NO CORRELATION

	Clearance		# Obstacles	
Algorithm	Path Length	Iteration	Path Length	Iteration
Visibility Road Map	-	Х	-	+
A*	-	+	-	Х
Dijkstra	-	+	-	+
BFS	-	+	-	+
Bidir BFS	-	+	-	+
Bidir A*	-	+	Х	Х
RRT*	-	-	Х	Х
Greedy Best First Search	-	-	-	-
RRT Sobol Sampler	-	-	Х	Х
RRT Path Smoothing	-	-	Х	Х
RRT	-	-	Х	Х
DFS	-	-	-	-

CONCLUSION & FUTURE WORK

- It was posible to establish relationships between the metrics, the algorithms, and the restrictions
- These results are shown qualitatively and were obtained using data analysis tools
- Future work, we intend to develop statistically validated indices that allow a quantitative approach and allow to generalize a prediction model of the behavior of the algorithms under different types of constraints

