
© Hitachi, Ltd. 2021. All rights reserved.

2021/10/03-07 @ DATA ANALYTICS 2021
Yuichiro Aoki email: yuichiro.aoki.jk@hitachi.com
Satoru Watanabe email: satoru.watanabe.aw@hitachi.com
Research and Development Group, Hitachi, Ltd.

Integrated Architecture of SQL Engine and
Data Analytics Tool with Apache Arrow Flight and
Its Performance Evaluation

mailto:yuichiro.aoki.jk@hitachi.com
mailto:satoru.watanabe.aw@hitachi.com

© Hitachi, Ltd. 2021. All rights reserved.

Short Resume

1

■ Presenter: Yuichiro Aoki

■ Senior Researcher at Hitachi, Ltd.

■ Research Interest: Data science
and parallel processing

© Hitachi, Ltd. 2021. All rights reserved.

Contents

2

1. Introduction
2. Background
3. Problems
4. Proposed Architecture
➢ Apache Arrow Flight
➢ JOIN Result Cache

5. Performance Evaluation
6. Discussion
7. Related Work
8. Conclusion

© Hitachi, Ltd. 2021. All rights reserved.

2. Background

3

◼ Data analytics in enterprise
systems require huge amount
of data in databases.

◼ Conventionally, SQL engines
retrieve the data from the
database using traditional
Open Database Connectivity
(ODBC).

◼ In complicated data analytics,
the data needs to be joined.

ODBC

row-oriented

SQL Engine
serialization

Data Analytics Tool

deserialization

join operation

© Hitachi, Ltd. 2021. All rights reserved.

3. Problems

4

◼ The data is serialized in the
SQL engine and deserialized in
data analytics tools.
Serialization/deserialization
demands many memory
copies and takes a lot of time.

◼ Complicated join operations
takes a lot of time.

◼ They are bottlenecks of the
data analytics performance.

ODBC

row-oriented

SQL Engine
serialization

Data Analytics Tool

deserialization

join operation

© Hitachi, Ltd. 2021. All rights reserved.

4. Proposed Architecture

5

◼ We propose a new integrated architecture of SQL Engine
and data analytics tool with Apache Arrow Flight.

Apache Arrow Flight

…

…

column-oriented

SQL Engine no serialization

Data Analytics Tool

column-oriented

no deserialization

Storage

column-oriented

no deserialization
no serialization

JOIN Result
Cache

© Hitachi, Ltd. 2021. All rights reserved.

4. Proposed Architecture: Apache Arrow Flight

6

◼ To reduce the number of serializations/deserializations, we
use:
⚫ Data transfer framework between the SQL engine and

the data analytics tool: Apache Arrow Flight
⚫ Data format: Apache Arrow in-memory column-oriented

data format.

◼ The same column-oriented data format does not need data
copy (serialization/deserialization) at the boundary of SQL
engine/data transfer framework and data transfer
framework/data analytics tool.

© Hitachi, Ltd. 2021. All rights reserved.

4. Proposed Architecture: JOIN Result Cache

7

◼ To reduce complicated join time, we use:
⚫ JOIN Result Cache

◼ How it works:
⚫ a join query is precomputed and cached if it has the

same columns as previous join queries but has different
tables. (ex. POS data, such as sales20210803,
sales20210804, …)

⚫ The tables are inferred from the history of table usage
in previous join queries.

◼ Effects and Use cases:
⚫ If cached, it reduces join

operation time.
⚫ For example, it is useful for daily

processing of POS system.

© Hitachi, Ltd. 2021. All rights reserved.

5. Performance Evaluation

8

◼ Performance Evaluation Environment
⚫ We used a virtual machine and CentOS 7.8.

Item Content

CPU
Intel® CoreTM i7-8665U

(4 cores / 8 threads)

Memory 32GB

Host OS Windows 10 Pro 2004

Virtual Machine

(VM)

Oracle VM Virtual Box 6.1.14

VM CPU 4 processors

VM Memory 16GB

Guest OS CentOS 7.8

© Hitachi, Ltd. 2021. All rights reserved.

5. Performance Evaluation(1) Apache Arrow Flight

9

◼ Evaluation (1): Apache Arrow Flight Performance
⚫ Measure execution time of data transfer from SQL engine to

data analytics tool
⚫ Dataset size: 130MB ～ 2.6GB

ODBC

row-oriented

SQL Engine
serialization

Data Analytics Tool

deserialization

Apache Arrow Flight

…

…

column-oriented

SQL Engine no serialization

Data Analytics Tool

column-oriented
no deserialization

M
ea

su
re

m
en

t
S
ec

ti
o
n

Conventional Case Our Proposal

© Hitachi, Ltd. 2021. All rights reserved.

5. Performance Evaluation(1) Apache Arrow Flight

10

◼ Evaluation (1): Apache Arrow Flight Performance
⚫ Dremio/Apache Arrow Flight runs 13.1～37.4 times faster

than PostgreSQL/ODBC, Presto/ODBC, and Dremio/ODBC.
⚫ Data transfer throughput of Dremio/Apache Arrow Flight is

224MB/s.

0

50

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000 2500 3000

Data Transfer Time (s)

PostgreSQL/ODBC Presto/ODBC

Dremio/ODBC Dremio/Arrow Flight

(MB)

(s)

0

50

100

150

200

250

Throughput (MB/s)

Data Transfer Throughput (MB/s)

PostgreSQL/ODBC Presto/ODBC Dremio/ODBC Dremio/Arrow Flight

(MB/s)

faster faster

© Hitachi, Ltd. 2021. All rights reserved.

5. Performance Evaluation(2) JOIN Result Cache

11

◼ Evaluation (2): JOIN Result Cache Performance
⚫ Measure execution time of query “SELECT * FROM table”. The

table is generated using complicated joins.
⚫ Dataset size: 256MB

Apache Arrow Flight

column-oriented

SQL Engine

Data Analytics Tool

column-oriented

Storage

column-oriented

JOIN Result
Cache

Cache ON Cache OFF

Measurement Section

© Hitachi, Ltd. 2021. All rights reserved.

5. Performance Evaluation(2) JOIN Result Cache

12

◼ Evaluation (2): JOIN Result Cache Performance
⚫ In Cache ON case, JOIN time is eliminated. Join query execution

time in Cache ON case is 2.4 times faster than in Cache OFF
case.

0

0.5

1

1.5

2

2.5

Cache OFF Cache ON

Query Execution Time (s)

JOIN Time Data Read Time Other

(s)

faster

JOIN Time (blue)
is eliminated.

© Hitachi, Ltd. 2021. All rights reserved.

6. Discussion

13

◼ Apache Arrow Flight does not need the serialization of the data
before data transfer and the deserialization after it. This is why
Apache Arrow Flight outperforms ODBC.

◼ However, in many cases, data analytics tools written in
Python® use DataFrame when users analyze the data.
DataFrame does not use Apache Arrow format and serialization
of the data is needed. This may be another bottleneck of the
performance.

◼ After serialization/deserialization disappears, JOIN time is a
next bottleneck. JOIN Result Cache reduces JOIN time.

◼ This architecture can cross the cloud boundaries, because no
specific hardware, such as RDMA, is not needed.

◼ In addition, if the system resides in one cloud, we can use
memory-mapped files to read to/write from the storage. It is
much faster than usual I/O system calls.

© Hitachi, Ltd. 2021. All rights reserved.

7. Related Work

14

◼ We use Apache Arrow/Apache Arrow Flight.
◼ We have JOIN Result Cache.
◼ We show data transfer performance comparison.
◼ We show an integrated architecture of data analytics system.

Apache

Arrow

Apache

Arrow

Flight

JOIN

Result

Cache

Data Transfer

Performance

Comparison

Integrated Data

Analytics

System

Dremio ✓ ✓ ✓

Li et al. ✓ ✓ ✓

Magpie ✓ ✓ ✓

ImmVis ✓

InfluxData ✓ ✓

RAPIDS

DataBricks

BigQuery

Snowflake

✓

This Study ✓ ✓ ✓ ✓ ✓

© Hitachi, Ltd. 2021. All rights reserved.

8. Conclusion

15

◼ We proposed a new architecture for a data analytics system
using column-oriented Apache Arrow/Arrow Flight and JOIN
Result Cache.

◼ Performance evaluation shows:
⚫ Apache Arrow Flight transfers the data 13.1-37.4 times

faster than ODBC because serialization/deserialization of the
data is eliminated.

⚫ JOIN Result Cache accelerates the query by 2.4 times using
precomputed JOIN results.

◼ In future work, we will design and implement such a data
analytics system using Apache Arrow and Apache Arrow Flight.

