/\ HITACHI

IARIA Inspire the Next

Integrated Architecture of SQL Engine and
Data Analytics Tool with Apache Arrow Flight and
Its Performance Evaluation

2021/10/03-07 @ DATA ANALYTICS 2021

Yuichiro Aoki email: yuichiro.aoki.jk@nhitachi.com
Satoru Watanabe email: satoru.watanabe.aw@hitachi.com
Research and Development Group, Hitachi, Ltd.

© Hitachi, Ltd. 2021. All rights reserved.

mailto:yuichiro.aoki.jk@hitachi.com
mailto:satoru.watanabe.aw@hitachi.com

Short Resume lﬂﬂﬁ?ﬂh

B Presenter: Yuichiro Aoki
B Senior Researcher at Hitachi, Ltd.

B Research Interest: Data science
and parallel processing

© Hitachi, Ltd. 2021. All rights reserved. 1

Contents

= CO N —

o0 ~J O O1

. Introduction

. Background

. Problems

. Proposed Architecture

> Apache Arrow Flight
> JOIN Result Cache

. Performance Evaluation
. Discussion
. Related Work

. Conclusion

HITACHI

Inspire the Next

2. Background lﬂﬁlﬁ?ﬂh

B Data analytics in enterprise
systems require huge amount Data Analytics Tool
of data in databases. deserialization

B Conventionally, SQL engines
retrieve the data from the ODBC
database using traditional

Open Database Connectivity _ _
(ODBC). SOL Enginefljioin operati

serialization

Ny

n

m |n complicated data analytics, row-oriented

the data needs to be joined.

© Hitachi, Ltd. 2021. All rights reserved. 3

3. Problems lﬂﬁlﬁ?ﬂh

B The data is serialized in the
SQL engine and deserialized in Data Analytics Tool
data analytics tools. deserialization
Serialization/deserialization
demands many memory
copies and takes a lot of time. ODBC

B Complicated join operations _ _
takes a lot of time. SQL Enginefflioin operati

serialization

Ny

n

row-oriented

B They are bottlenecks of the
data analytics performance.

© Hitachi, Ltd. 2021. All rights reserved. 4

4. Proposed Architecture lﬂﬁlﬁ?ﬂh

B We propose a new integrated architecture of SQL Engine
and data analytics tool with Apache Arrow Flight.

Data Analytics Tool no deserialization

ARROWM» colymn-priented

light

SQL Engine no serialization

JOIN Result
Cache

ARROWD» column-oriented

no deserialization
no serialization

Storage
K AICUEN column-oriented

itachi, Ltd. 2021. All rights reserved. 5

4. Proposed Architecture: Apache Arrow Flight HITACHI

m To reduce the number of serializations/deserializations, we
use:
® Data transfer framework between the SQL engine and
the data analytics tool: Apache Arrow Flight
® Data format: Apache Arrow in-memory column-oriented
data format.

¥

B The same column-oriented data format does not need data
copy (serialization/deserialization) at the boundary of SQL
engine/data transfer framework and data transfer
framework/data analytics tool. oy

© Hitachi, Ltd. 2021. All rights reserved. 6

4. Proposed Architecture: JOIN Result Cache HITACHL

B To reduce complicated join time, we use:
® JOIN Result Cache

m How it works:

® a join query is precomputed and cached if it has the
same columns as previous join queries but has different
tables. (ex. POS data, such as sales20210803,
sales20210804, ---)

® The tables are inferred from the history of table usage
In previous join queries.

B Effects and Use cases:

® |f cached, it reduces join
operation time.

® For example, it is useful for daily
processing of POS system.

© Hitachi, Ltd. 2021. All rights reserved. 7

5. Performance Evaluation lﬂﬁlﬁ?ﬂk

B Performance Evaluation Environment
® We used a virtual machine and CentOS 7.8.

Intel® Core™ 7-8665U

CPU (4 cores / 8 threads)
Memory 32GB
Host OS Windows 10 Pro 2004
_ _ Oracle VM Virtual Box 6.1.14
V|rtua(lvl\l<l/|a)lch|ne VM CPU 4 processors
VM Memory 16GB

Guest OS CentOS 7.8

© Hitachi, Ltd. 2021. All rights reserved. 8

5. Performance Evaluation (1) Apache Arrow Flight ~ HITACHI

W Evaluation (1): Apache Arrow Flight Performance
® Measure execution time of data transfer from SQL engine to
data analytics tool
® Dataset size: 130MB ~ 2.6GB

Conventional Case Our Proposal
Data Analytics Tool Data Analytics Toolng degerialization
4 deser'il'zation K°ﬁnow>>> colymn-priented
ODBC ‘ Apache Arrow Flight

SQL Engine SQL Engine no serifalization
serialization

row-oriented K°ﬁnow>>> column-oriented

© Hitachi, Ltd. 2021. All rights reserved. 9

Measurement Section

P
<«

5. Performance Evaluation (1) Apache Arrow Flight ~ HITACHI

W Evaluation (1): Apache Arrow Flight Performance
® Dremio/Apache Arrow Flight runs 13.1~37.4 times faster
than PostgreSQL/ODBC, Presto/0ODBC, and Dremio/ODBC.
® Data transfer throughput of Dremio/Apache Arrow Flight is
224MB/s.

(s) Data Transfer Time (s) (le?3 0/ s) Data Transfer Throughput (MB/s)

0
= - ' faster ., tfaSter
128 .;:/c 50

0 500 1000 1500 2000 2500 3000

500
450
400

20
350
15

0 I

Throughput (MB/s)
—@— PostgreSQL/ODBC —@— Presto/ODBC (MB)

Dremio/ODBC —@— Dremio/Arrow Flight

B PostgreSQL/ODBC ® Presto/ODBC = Dremio/ODBC ® Dremio/Arrow Flight

© Hitachi, Ltd. 2021. All rights reserved. 10

5. Performance Evaluation (2) JOIN Result Cache HITACHI

W Evaluation (2): JOIN Result Cache Performance
® Measure execution time of query “SELECT * FROM table”. The
table is generated using complicated joins.
® Dataset size: 256MB

Data Analytics Tool
ARROW» column-oriented

m) Measurement Section

JOIN Result

Cache arrow colufllin-oriented

Storage

S ALICIEE column-oriented

served. 11

5. Performance Evaluation (2) JOIN Result Cache HITACHI

Inspire the Next

m Evaluation (2): JOIN Result Cache Performance

® |n Cache ON case, JOIN time is eliminated. Join query execution

time in Cache ON case is 2.4 times faster than in Cache OFF
case.

s) Query Execution Time (S)

‘faster

Cache OFF Cache ON

JOIN Time (blue)
is eliminated.

mJOIN Time mData Read Time Other

© Hitachi, Ltd. 2021. All rights reserved. 12

6. Discussion I,E'Jlﬁ?ﬂlf

B Apache Arrow Flight does not need the serialization of the data
before data transfer and the deserialization after it. This is why
Apache Arrow Flight outperforms ODBC.

B However, in many cases, data analytics tools written in
Python® use DataFrame when users analyze the data.
DataFrame does not use Apache Arrow format and serialization
of the data is needed. This may be another bottleneck of the
performance.

B After serialization/deserialization disappears, JOIN time is a
next bottleneck. JOIN Result Cache reduces JOIN time.

B This architecture can cross the cloud boundaries, because no
specific hardware, such as RDMA, is not needed.

B |n addition, if the system resides in one cloud, we can use
memory-mapped files to read to/write from the storage. It is
much faster than usual 1/0 system calls.

© Hitachi, Ltd. 2021. All rights reserved. 13

7. Related Work lﬂﬂﬁ?ﬂh

B We use Apache Arrow/Apache Arrow Flight.

B We have JOIN Result Cache.

B We show data transfer performance comparison.

B We show an integrated architecture of data analytics system.

Data Transfer Integrated Data
Performance Analytics
Comparison System

Dremio v v Vv

Li et al. v v v

Magpie v v v

ImmVis v

InfluxData v v

RAPIDS

DataBricks /

BigQuery

Snowflake

This Study v v v v v

© Hitachi, Ltd. 2021. All rights reserved. 14

8. Conclusion I,E'Jl%?ﬂlf

B We proposed a new architecture for a data analytics system
using column-oriented Apache Arrow/Arrow Flight and JOIN
Result Cache.

B Performance evaluation shows:
® Apache Arrow Flight transfers the data 13.1-37.4 times
faster than ODBC because serialization/deserialization of the
data is eliminated.
® JOIN Result Cache accelerates the query by 2.4 times using
precomputed JOIN results.

B |n future work, we will design and implement such a data
analytics system using Apache Arrow and Apache Arrow Flight.

© Hitachi, Ltd. 2021. All rights reserved. 15

HITACHI

Inspire the Next

