

Sharing FANCI Features: A Privacy Analysis of Feature Extraction for DGA Detection

Benedikt Holmes Arthur Drichel

Ulrike Meyer

holmes@itsec.rwth-aachen.de RWTH Aachen University

1

*domain generation algorithm (DGA) **non-existent domain (NXD)

*domain generation algorithm (DGA) **non-existent domain (NXD)

Context - DGA Detection

Improving DGA detection

- Sharing data
- Sharing detection models
- Distributed training approaches

Improving DGA detection

- Sharing data
- Sharing detection models
- Distributed training approaches

Privacy issues when sharing raw data

- Alternative data representation
- Alternative training algorithm

Improving DGA detection

- Sharing data
- Sharing detection models
- Distributed training approaches

Privacy issues when sharing raw data

- \rightarrow Alternative data representation
 - Alternative training algorithm

Improving DGA detection

- Sharing data
- Sharing detection models
- Distributed training approaches

Privacy issues when sharing raw data

- \rightarrow Alternative data representation
 - Alternative training algorithm

Why are bNXDs privacy sensitive?

- \bullet Disclosure of end-user browsing history / behaviour
- Disclosure of usage of misconfigured software
- Frequent bNXDs may be registered for phishing attacks

Object under Study: FANCI

Object under Study: FANCI

Object under Study: FANCI

Privacy Aspects of Feature Extraction

How to quantify suitability of feature representation w.r.t. privacy?

Data-driven Evaluation - Setup

Data-driven Evaluation - Setup

Data-driven Evaluation - Setup

Data-driven Evaluation - Benign NXD Data Sets

Results - Reconstruction Error

NXD Source		Ø Reconstruction Error
Attack	Evaluation	
RWTH	RWTH	0.51
MU	MU	0.53
CESNET	CESNET	0.46

Results - Reconstruction Error

	NXD Source		Ø Reconstruction Error
	Attack	Evaluation	
RW		RWTH	0.51
	RWTH	MU	0.72
		CESNET	0.66
MU		RWTH	0.75
	MU	MU	0.53
		CESNET	0.61
CESNE		RWTH	0.67
	CESNET	MU	0.65
		CESNET	0.46

Discussion - Feature Space Overlap

Although comprising unique NXDs, the data sets intersect in the feature space, for instance:

Discussion - Top 10% Best Reconstructions

Average reconstruction performance in top 10% lies at 0.276

Those types of bNXD are not considered privacy critical

FANCI's feature representation constitutes no considerable privacy threat

• We have quantified the risk using three real-world NXD data sets

Sharing scenarios based on this representation could be used in the future

• The privacy guarantee even holds for DGA multi-class classification

The evaluation framework is generally applicable

• Alternative feature extractors can be analyzed in the same manner