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The Decision Engineering Analysis Laboratory has engaged in a variety of cyber-related research, such as in the areas
of:

* Leveraging Sidecars for a More Probabilistic Cyber Convergence

e Systems Resilience: Reliable Cyber-protection (cyber defense, guaranteed reliability, cyber awareness, cyber-space,
on-line cyber protection, traffic, etc.)

e Log Analysis

e Challenges to Cyber Services

* The Nexus of Cognitive Computing, Artificial Intelligence and Cyber Security — Anomaly Detection at Scale

¢ Leveraging Artificial Intelligence/Cognitive Computing to Meet the Increasing Cycles of Adaptation within the Cyber
Domain

e Advances to Protect Critical Assets

e Cyber Attack Surfaces and the Interoperability of Architectural Application Domain Resiliency

e Advanced Approaches to Enhance Cyber Applications

® Cyber-Centered Major Challenges, Monitoring and Evaluating the Cyber-health of Industrial Systems

* Enhancing Cyber Infrastructural Resilience for Cyber Cities




The issue of software supply chain vulnerabilities has become prevalent. Various governmental directives, such as
the “Improving the Nation’s Cybersecurity” (Executive Order 14028, which was issued on 12 May 2021 and
proceeded to direct the National Institute of Standards and Technology or NIST to enhance software supply chain
security guidelines) underscore the significance.

Given the rise in software supply chain vulnerabilities, fuzz testing (a.k.a., fuzzing) has been invaluable for uncovering
a plethora of security vulnerabilities (e.g., improper handling of procedures, invalid integrity protection, and security
procedure bypasses) within software.

Hence, it seems ironic that severe software supply chain vulnerabilities have been uncovered within certain mission-
critical software fuzzing paradigms — the very mechanism that is supposed to discern cyber vulnerabilities and
enhance the cyber posture.




Traditionally, white-box fuzzers produce higher quality inputs, but the computational overhead is much higher, while
black-box fuzzers that focus upon random mutation have computational overhead that is much lower, but produce
lower quality inputs.

To address these challenges, we present a bespoke grey-box concolic fuzzing module, which is comprised of four
differing bespoke Grey-Box Concolic Fuzzers (GBCFs).

The GBCFs are able to achieve higher coverage (on average) and able to more robustly discern which parts of a
software program they visit and how consistent they are in doing so.

In turn, this GBCF set is fuzzed by tertiary and quaternary GBCFs, so as to mitigate against inadvertently not
discerning vulnerabilities within the primary and secondary GBCFs themselves. The utilization of distinct and
disparate tertiary and quaternary fuzzers (which utilize different classes for mutating a seed as well as seeding
schedules) increases the likelihood of increased coverage (on average).




A primary GBCF is able to achieve higher coverage (on average)
and able to more robustly discern which parts of a software
program it visits and how consistent it is in doing so.

A secondary GBCF, which utilizes different classes (from that of

the primary fuzzer) for mutating a seed, contributes toward
higher coverage.

A tertiary GBCF fuzzes the primary grey-box concolic fuzzer so as
to discern potential vulnerabilities within the fuzzer itself.

A guaternary GBCF fuzzes the secondary grey-box concolic fuzzer
so as to discern potential vulnerabilities within the fuzzer itself.
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The entirety of the prior Figure 1 is situated within the
yellow box of Figure 2.

Various conventional fuzzers are still quite useful, but in
many cases, they are sub-optimal at discerning ‘hard-to-
trigger’ bugs. For these cases, the GBCF are invaluable.

Performance metrics for assessing the GBCF include, but
are not limited to: (1) Unigue Crashes, (2) Computational
Resources Overhead, and (3) Coverage. For (1), a lower
Relative Standard Deviation (RSD) implies higher
performance stability (as the discovery rate of bugs is above
the acceptable threshold). For (2), if a particular paradigm is
effective at finding more bugs, but the resources consumed
are disproportionate, then that must be taken into
consideration. Finally, (3) signifies the intrinsic ability of the
fuzzer for exploring new pathways; this is of import for
pursuing relevant pathways, which lead to vulnerable code.




Deep [Learning] Convolutional Generative Adversarial [Neural] Network-facilitated
Enhanced Context Module

Progress more rapidly into deeper code sectors

The coverage feedback derived by both primary and secondary

GBCFs (Aggregate Fuzzer Set for Primary/Secondary Fuzzers)

helps to operationalize an underpinning numerical stability-

centric Deep Learning Convolutional Generative Adversarial E:;’:t':gcf(
Neural Network-facilitated Enhanced Context Module, which is

underpinned by a Numerical Stability-Centric Module (NSCM).

The NSCM contains two Convolutional Adversarial Neural ‘:,:fg’::;’:g
Networks (CANNs), each with a different implementation and System
version of PyTorch; PyTorch v0.4.1 (more numerically stable) is
used in CANN #1, and PyTorch v1.7.0 (less numerically stable) is

used CANN #2.
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The Tensorflow-based DCGAN #3 helps to stabilize the entire
NSCM paradigm.




The Deep Learning Convolutional Generative Adversarial Neural Network-facilitated Enhanced Context Module (ECM)
is the mainstay of the Fuzzing Module; its purpose is to serve as a macro feedback loop. In essence, the ECM selects
a seed, mutates it, and serves it as input to the test target. If the input causes a crash, it will be added to the ECM’s
crash set. Alternatively, if the input segues to new coverage, it will be added to the search seed pool.

In turn, the Fuzzing Module derives Coverage Feedback from the primary and secondary GBCFs (Aggregate Fuzzer
Set for Primary/Secondary Fuzzers) for the Test Target. This then serves as input to the NSCM, which processes the
information and informs an Adaptive Weighting System, which dynamically weights the Class Families for the
Mutating Seed and Seed Schedules. This should segue to a more optimal Seed Schedule for decreasing Time-to-
Exposure (TTE) - the speed at which bugs are found - as well as RSD. The resulting lower RSD/higher performance
stability can be attributed to the NSCM and Adaptive Weighting System.

Overall, the bespoke grey-box concolic fuzzing module, which is comprised of four differing GBCFs, shows promise.




In a not insignificant portion of the 5G/B5G/6G ecosystem cyber cases, the more serious security problems are
implementation imperfections (e.g., network protocols); these constitute attack surface areas, which are often
exploited. In the case for which 5G/B5G/6G protocols are still evolving and being defined, these implementation
imperfections can be amplified. Conventional software cyber security frameworks, which involve code review, risk
analysis, penetration testing, and prototypical fuzzing, do not currently suffice for robustly addressing a domain
space, such as the 5G/B5G/6G ecosystem, wherein the protocols are evolving at a rapid pace.

Prototypical fuzzers are challenged by the coverage issue, and conventional Coverage-based Grey-box Fuzzers (CGFs)
are as well. In an endeavor to provide a mitigation pathway, we presented an architectural stack comprised of a
sequence of bespoke GBCFs; as the primary GBCF (used against the testing target) is designed to work in conjunction
with a secondary GBCF so as to better mitigate against coverage issues (e.g., increasing the probability of visiting
certain blocks/lines of code of the software program), and both are fuzzed by tertiary and quaternary GBCFs (which
utilize different classes for mutating a seed as well as seeding schedules), so as to mitigate against inadvertently not
discerning vulnerabilities within the primary and secondary GBCFs themselves, the likelihood of increased coverage
(on average) is enhanced. The feedback for coverage and adaptive weighting as well as seed scheduling schemas
contribute to the efficacy.




