ON INTEGRATED MODELS FOR COHERENT CONTENT MANAGEMENT AND DOCUMENT DISSEMINATION

The Thirteenth International Conference on Creative Content Technologies
CONTENT 2021

April 18, 2021, to April 22, 2021 – Porto, Portugal – Hans-Werner Sehring
hans-werner.sehring@tallence.com
Dr. Hans-Werner Sehring

Short Bio

> Since 2020 at Tallence AG, Hamburg, Germany

> Professional experience:
 > 10+ years in research
 > 10+ years in software development and consulting for digital transformation

> Topics:
 > software architecture, (model-driven) software development
 > content management, ecommerce, personalization, knowledge representation
 > user interactions on web and mobile

> IARIA Fellow since 2012

> Steering committee member of the CONTENT conference

> Editor-in-chief of the International Journal on Advances in Intelligent Systems
Outline of the paper

1. Content management systems
 > Content is represented as data in various forms throughout a content management system
 > Software components must consistently implement the underlying content model in order to maintain coherence

2. We use the Minimalistic Meta Modeling Language (M³L) to study content modeling and management
 > M³L was designed with Model-driven Software Development tasks in mind
 > M³L proved useful for content modeling
 > We study coherent content representations using two examples
 3. Multilingual websites
 4. Websites that incorporate campaign management

5. We close with a summary
Overview over a sample content management application

The content and the underlying content model are used in different parts of a content management system.

> A content model defines interfaces that are consumed by different audiences, e.g.:
 > An adequate editing tool and support for quality assurance for editors
 > A framework to customize the CMS by application programmers
 > Client-side apps developed by application programmers
 > Templates for layouts by application programmers.
Encodings of content all over the place

Content management systems consist of various software components that use content representations in various forms.

- All schemata, APIs, etc. must conform to the same underlying model.
- In the case of a CMS, this is the content model.
- It shows up in manifold form throughout a system.
An overview over (nearly) all language constructs. More complete descriptions can be found in the paper and the literature.

> A

> A is a B

> A is the B

> A is a B { C }

> A |= D

> A |- E F G.

> The declaration of or reference to a concept named A

> The refinement of a concept B to a concept A;

> A is a specialization of B, B is a generalization of A

> Containment of concepts;

> C belongs to the content of A, A is the context of C

> The semantic rule of a concept of a concept A;

> whenever A is referenced, D is bound;

> if D does not exist, it is created in the same context as A

> The syntactic rule of a concept A;

> A is printed out as or recognized from the concatenation of the syntactic forms of concepts E, F, and G;

> if not defined, a concept evaluates to / is recognized from its name
M³L Expression Evaluation

- The M³L has an operational semantics for expression evaluation
- It is based on (any combinations of)
 - Refinement
 - Semantic rules
 - Visibility rules
 - All concepts in the content of a concept are also visible in the content of refinements: \(A \{ B \}, C \text{ is an } A \Rightarrow C \{ B \} \)
 - All concepts in the content of a concept are also visible in the contents of concepts in the context of that concept:
 \(D \{ E \{ F \} \Rightarrow E \{ F \{ D \} \} \)
 - Narrowing: If a concept A has a subconcept B, and if all concepts defined in the context of B are equally defined in the context of A, then each occurrence of A is narrowed down to B.
Basic content management with the M³L

The M³L can be used to express content and content models

> Using the M³L, with a content model like:

```plaintext
Article is a Content {
    Title is a String
    Text is a FormattedString
    Image is an OpaqueContent }
```

(Base types like Content, String, FormattedString, and OpaqueContent may be predefined here.)

> According to this mode, e.g., the following content can be created:

```plaintext
NewsArticle123 is an Article {
    "Breaking News" is the Title
    "This is a report about ..." is the Text
    Asset456 is an Image
    Asset789 is an Image }
```
Basic Document Rendering

> Semantic production rules allow formulating templates for document rendering

> Example HTML rendering:

```
Article |- "<div class="article">"
   "<div class="title">" Title </div>
   "<div class="text">" Text </div>
   "<div class="image">"
      "<img src="" URL from ImageResource {
         Image is the Content
      }
   
   </div>
</div> .
```

> (Note that, e.g., `<div>` is implicitly defined and syntactically evaluates to its name.)
Basic HTTP concepts in M³L
Likewise, communication protocols can be defined using the M³L

> Several protocol components are required for web interactions.

> A concept for URLs:

\[
\text{URL} \{ \text{Protocol} \ \text{Host} \ \text{Port} \ \text{Path} \} \ |- \ \text{Protocol} :// \ \text{Host} : \ \text{Port} \ \text{Path} .
\]

> A concept for HTML webpages (simplified):

\[
\text{WebPage} \{ \text{Title} \ \text{Content} \ \text{URL} \} \ |- \ <\text{html}> \ <\text{head}> \ <\text{title}> \ \text{Title} \ </\text{title}> \ </\text{head}> \\
\quad \ <\text{body}> \ \text{Content} \ </\text{body}> \ </\text{html}> .
\]

> A concept for Cookies:

\[
\text{Cookie} \{
\quad \text{Name} \ \text{is a String}
\quad \text{Value} \ \text{is a String}
\}
\quad |- \ \text{Cookie: Name = Value} .
\]
The bidirectional nature of syntactic rules allows to specify inputs and outputs.

A concept for (HTTP) requests:

```
Request { URL ProtocolVersion Method Parameters HeaderAttributes
          Cookies is a Cookie Body }

Method " " Path from URL " " Protocol from URL / ProtocolVersion
HeaderAttributes \n Cookies \n \nBody .
```

A concept for (HTTP) responses:

```
ResourceResponse is a Response { Protocol ProtocolVersion Cookies Content }

Protocol / ProtocolVersion " " 200 " " OK \nCookies \n\nContent \n .
```
A base concept for rules to handle requests by specifying the input/output behavior:

```plaintext
WebHandle {
  2 is the ProtocolVersion
  Request { ... }
  |= Response {
    WebPage {
      URL from Request is the URL
    } is the Content
    Cookies from Request is the Cookies
  }
}
```

In the context of `WebHandle`, e.g., responses are defined for possible requests.

This concept forms the basis to define web servers.
Multilingual websites

> Many websites are offered in multiple languages. The content of such websites is localized. Additionally, the websites content and structure may differ.

> Typically, users can choose their preferred language.

> As an example, assume a website with multilingual content and webpages that are requested through URLs that have a language code as their first path segment. E.g., https://www.tallence.com/en/why delivers an English page.
Basic M³L concepts for multilingual websites

> Concept for the basis of multilingual websites:

```
MultilingualWebsite is a Website {
    Language { Code }
    URL { Code }
    WebHandle {
        Request |= Response {
            WebPage { URL from Request is the URL }
            from Language {
                Code from URL from Request is the Code }
            is the Content }
    }
```

On Integrated Models for Coherent Content Management and Document Dissemination / Hans-Werner Sehring / 2021
// A sample multilingual website

> Code:

```java
ACME.com-Site is a MultilingualWebsite {
    WebPage4711 is a WebPage {
        URL4711 is the URL {... /news is the Path ...}
        MainArticle is an Article, the Content {
            Image789 is the Image }
    }
    English is a Language {
        en is the Code
        WebPage4711 { "Big News" is the Title
            MainArticle {"..." is the Text}}
    }
    French is a Language {
        fr is the Code
        WebPage4711 { "..." is the Title
            MainArticle {"..." is the Text}}
    }
}
```
// Webpages as part of campaigns

> **Campaigns** are used to attract users and to direct their attention to certain parts of the offering.

> If goal is to direct customers to the website:
 > **Landing pages** as touchpoints for campaigns on the website.
 > When arriving on a landing page, a user is assigned to a campaign.
 > Assignment used to track the further journey accordingly, to present special offers as part of the campaign, etc.

> For this example, we use **Cookies** to store the information about the campaign a user participates in (as opposed to the URL segment used for the language preference in the previous example).
Basic M^3L concepts for website campaigns

> Concept:

WebsiteWithCampaigns {
 LandingPage is a WebPage
 Campaign { Key LandingPage }
}

WebHandle {
 CampaignRequest is a Request {
 CampaignKey is the Value from Cookies { campaign is the Name }
 } |= CampaignResponse {
 WebPage { URL from Request is the URL }
 from Campaign { CampaignKey is the Key }
 is the Content
 Cookies from CampaignRequest is the Cookies }
 LandingPageResponse is a CampaignResponse {
 Content is a LandingPage
 CampaignCookie is a Cookie {
 campaign is the Name
 Key from Campaign { WebPage is the LandingPage } is the Value
 } is a Cookies }
}

On Integrated Models for Coherent Content Management and Document Dissemination / Hans-Werner Sehring / 2021
A campaign website example

Example of a website with campaigns:

ACME.com-Site is a WebsiteWithCampaigns {
 Product2Page is a WebPage {
 Product2 is the Title
 Product2Description is a Content
 }
 BuyAProduct1Campaign is a Campaign {
 BuyAProduct1Campaign is the Key
 BuyAProduct1Page is the LandingPage {
 "Buy More Product1" is the Title
 }
 Product2Page {
 Product1Teaser is an Article {
 "Buy a Product1" is the Title
 "Go to Product1 page" is the Text
 Product1PreviewImage is the Image
 } is a Content
 }
 }
}

On Integrated Models for Coherent Content Management and Document Dissemination / Hans-Werner Sehring / 2021
Summary

> Many components of software system relate to an overarching model of the domain entities managed.

> Therefore, content models, like most data schemas and information models, are of central importance for a software system.

> The delivery of content in an interactive, request-based manner relates to content in various ways through requests, request handling, and the resulting responses.

> The examples of multilingual and campaign-specific content demonstrated that content transmission can be integrated with content models for coherent interactions.