

TA//ENCE

ON INTEGRATED MODELS FOR COHERENT CONTENT MANAGEMENT AND DOCUMENT DISSEMINATION

The Thirteenth International Conference on Creative Content Technologies CONTENT 2021

April 18, 2021, to April 22, 2021 – Porto, Portugal – Hans-Werner Sehring hans-werner.sehring@tallence.com

// Dr. Hans-Werner Sehring

Short Bio

- > Since 2020 at Tallence AG, Hamburg, Germany
- > Professional experience:
 - > 10+ years in research
 - > 10+ years in software development and consulting for digital transformation
 - > Topics:
 - > software architecture, (model-driven) software development
 - > content management, ecommerce, personalization, knowledge representation
 - > user interactions on web and mobile
- > IARIA Fellow since 2012
- > Steering committee member of the CONTENT conference
- > Editor-in-chief of the International Journal on Advances in Intelligent Systems

TA//ENCE

Dr. Hans-Werner SehringSenior Software Architect

Tallence AGNeue Gröningerstraße 13
20457 Hamburg

hans-werner.sehring@tallence.com

// Outline of the paper

- 1. Content management systems
 - > Content is represented as data in various forms throughout a content management system
 - > Software components must consistently implement the underlying content model in order to maintain coherence
- 2. We us the Minimalistic Meta Modeling Language (M³L) to study content modeling and management
 - > M³L was designed with Model-driven Software Development tasks in mind
 - > M³L proved useful for content modeling
- > We study coherent content representations using two examples
 - 3. Multilingual websites
 - 4. Websites that incorporate campaign management
- 5. We close with a summary

// Overview over a sample content management application

The content and the underlying content model are used in different parts of a content management system

- > A content model defines interfaces that are consumed by different audiences, e.g.:
 - > An adequate editing tool and support for quality assurance for editors
 - > A framework to customize the CMS by application programmers
 - > Client-side apps developed by application programmers
 - Templates for layouts by application programmers.

// Encodings of content all over the place

Content management systems consist of various software components that use content representations in various forms

- > All schemata, APIs, etc. must conform to the same underlying model.
- > In the case of a CMS, this is the content model.
- > It shows up in manifold form throughout a system.

// M³L

An overview over (nearly) all language constructs. More complete descriptions can be found in the paper and the literature

- > A
- > A is a B
 A is the B
- **> A** is a **B** { **C** }
- > A |= D

> A |- E F G.

- > The declaration of or reference to a concept named A
- The <u>refinement</u> of a concept B to a concept A;
 A is a specialization of B, B is a generalization of A
- Containment of concepts;
 C belongs to the content of A, A is the context of C
- > The semantic rule of a concept of a concept A; whenever A is referenced, D is bound; if D does no exist, it is created in the same context as A
- > The syntactic rule of a concept A;
 A is printed out as or recognized from the concatenation of the syntactic forms of concepts E, F, and G;
 if not defined, a concept evaluates to / is recognized from its name

// M³L Expression Evaluation

- > The M³L has an operational semantics for expression evaluation
- > It is based on (any combinations of)
 - > Refinement
 - > Semantic rules
 - > Visibility rules
 - > All concepts in the content of a concept are also visible in the content of refinements: A { B }, C is an A⇒C { B }
 - > All concepts in the content of a concept are also visible in the contents of concepts in the context of that concept:

```
D E \{ F \} \Rightarrow E \{ F \{ D \} \}
```

> Narrowing: If a concept A has a subconcept B, and if all concepts defined in the context of B are equally defined in the context of A, then each occurrence of A is narrowed down to B.

```
> Person {
    Name is a String }
  PersonMary is a Person {
    Mary is the Name }
  PersonPeter is a Person {
    Peter is the Name
    42 is the Age }
> Person {
    Peter is the Name
    42 is the Age }
  ⇒ PersonPeter
> Person {
    Mary is the Name
    42 is the Age }
  ⇒ Person {
    Mary is the Name
    42 is the Age }
```

// Basic content management with the M³L

The M³L can be used to express content and content models

> Using the M³L, with a content model like:

```
Article is a Content {
    Title is a String
    Text is a FormattedString
    Image is an OpaqueContent }
```

(Base types like Content, String, FormattedString, and OpaqueContent may be predefined here.)

> According to this mode, e.g., the following content can be created:

```
NewsArticle123 is an Article {
    "Breaking News" is the Title
    "This is a report about ..." is the Text
    Asset456 is an Image
    Asset789 is an Image }
```


// Basic Document Rendering

Also, templating rules for content rendering can be expressed in M³L

- > Semantic production rules allow formulating templates for document rendering
- > Example HTML rendering:

> (Note that, e.g., </div> is implicitly defined and syntactically evaluates to its name.)

// Basic HTTP concepts in M³L

Likewise, communication protocols can be defined using the M³L

> Several protocol components are required for web interactions.

On Integrated Models for Coherent Content Management and Document Dissemination / Hans-Werner Sehring / 2021

> A concept for URLs:

```
URL { Protocol Host Port Path } |- Protocol :// Host : Port Path .
```

> A concept for HTML webpages (simplified):

```
WebPage { Title Content URL } |- <html> <head> <title> Title </title> </head>
                                        <body> Content </body> </html> .
```

> A concept for Cookies:

```
Cookie {
  Name is a String
  Value is a String }
|- Cookie: Name = Value .
```

22.04.21

// Basic HTTP concepts in M³L (cont'd)

- > The bidirectional nature of syntactic rules allows to specify inputs and outputs.
- > A concept for (HTTP) requests:

> A concept for (HTTP) responses:

```
ResourceResponse is a Response { Protocol ProtocolVersion Cookies Content }
|- Protocol / ProtocolVersion " " 200 " " OK \n
Cookies \n \n
Content \n .
```

// Basic HTTP concepts in M³L (cont'd)

> A base concept for rules to handle requests by specifying the input/output behavior:

```
WebHandle {
    2 is the ProtocolVersion
    Request { ... }
    |= Response {
        WebPage {
            URL from Request is the URL
        } is the Content
        Cookies from Request is the Cookies
    }
}
```

- > In the context of **WebHandle**, e.g., responses are defined for possible requests.
- > This concept forms the basis to define web servers.

// Multilingual websites

- Many websites are offered in multiple languages.
 The content of such websites is localized. Additionally, the websites content and structure may differ.
- > Typically, users can choose their preferred language.
- > As an example, assume a website with multilingual content and webpages that are requested through URLs that have a language code as their first path segment.
 - E.g., https://www.tallence.com/en/why delivers an English page.

// Basic M³L concepts for multilingual websites

> Concept for the basis of multilingual websites:

```
MultilingualWebsite is a Website {
   Language { Code }
   URL { Code }
   |- Protocol :// Host : Port / Code Path .
   WebHandle {
      Request |= Response {
        WebPage { URL from Request is the URL }
        from Language {
            Code from URL from Request is the Code }
        is the Content }
}
```


// A sample multilingual website

> Code:

// Webpages as part of campaigns

- > <u>Campaigns</u> are used to attract users and to direct their attention to certain parts of the offering.
- > If goal is to direct customers to the website:
 - > Landing pages as touchpoints for campaigns on the website.
 - > When arriving on a landing page, a user is assigned to a campaign.
 - > Assignment used to track the further journey accordingly, to present special offers as part of the campaign, etc.
- > For this example, we use Cookies to store the information about the campaign a user participates in (as opposed to the URL segment used for the language preference in the previous example).

// Basic M³L concepts for website campaigns

> Concept:

```
WebsiteWithCampaigns {
 LandingPage is a WebPage
  Campaign { Key LandingPage }
  WebHandle {
    CampaignRequest is a Request {
      CampaignKey is the Value from Cookies { campaign is the Name }
    } |= CampaignResponse {
      WebPage { URL from Request is the URL }
      from Campaign { CampaignKey is the Key }
      is the Content
      Cookies from CampaignRequest is the Cookies }
    LandingPageResponse is a CampaignResponse {
      Content is a LandingPage
      CampaignCookie is a Cookie {
        campaign is the Name
        Key from Campaign { WebPage is the LandingPage } is the Value
      } is a Cookies }
```


// A campaign website example

> Example of a website with campaigns:

```
ACME.com-Site is a WebsiteWithCampaigns {
     Product2Page is a WebPage {
        Product2 is the Title
       Product2Description is a Content }
     BuyAProduct1Campaign is a Campaign {
       BuyAProduct1Campaign is the Key
       BuyAProduct1Page is the LandingPage {
          "Buy More Product1" is the Title }
Landing
       Product2Page {
Page
          Product1Teaser is an Article {
            "Buy a Product1" is the Title
            "Go to Product1 page" is the Text
            Product1PreviewImage is the Image
Targeted
          } is a Content } } 
Page
```

// Summary

- > Many components of software system relate to an overarching model of the domain entities managed.
- > Therefore, content models, like most data schemas and information models, are of central importance for a software system.
- > The delivery of content in an interactive, request-based manner relates to to content in various ways through requests, request handling, and the resulting responses.
- > The examples of multilingual and campaign-specific content demonstrated that content transmission can be integrated with content models for coherent interactions.

22.04.21

TA//ENCE

THANKS.

Hamburg

Tallence AG Neue Gröningerstraße 13 20457 Hamburg

T +49 40 36 09 35 100 F +49 40 36 09 35 200 info@tallence.com

Frankfurt/Main

Tallence AG Walther-von-Cronberg-Platz 1 60594 Frankfurt am Main

T +49 69 401 50 76 60 F +49 40 36 09 35 200 frankfurt@tallence.com

Karlsruhe

Tallence AG Erbprinzenstraße 23 76133 Karlsruhe

T +49 721 38 13 49 10 F +49 40 36 09 35 200 karlsruhe@tallence.com

Görlitz

Tallence AG Neißstraße 27 02826 Görlitz

T +49 40 36 09 35 100 F +49 40 36 09 35 200 goerlitz@tallence.com

Marburg

Tallence AG Am Grün 40 35037 Marburg

T +49 40 36 09 35 100 F +49 40 36 09 35 200 info@tallence.com