

Institut de Recherche en Informatique et Systèmes Aléatoires

Automatic Emotions Analysis for French Email Campaigns optimization

Alexis Blandin ^{1,2,4}, Farida Saïd^{1,3}, Jeanne Villaneau^{1,2}, Pierre-François Marteau^{1,2} ¹ Université Bretagne Sud (France) ² IRISA ³ LMBA ⁴ UNEEK-Kosmopolead

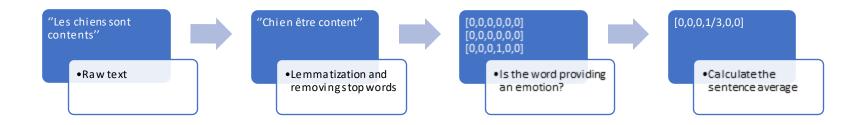
Alexis BLANDIN

- PhD student since January 2020
 - Title : "Opinion Analysis for Customer Relationship Optimization"
 - Member of the IRISA laboratory : team EXPRESSION
 - CIFRE fellowship with **UNEEK**
- "Age Recommendation for Texts" LREC 2020
- Graduate from **ENSSAT** engineering school : specialization in Artificial Intelligence
- Master degree in Computer Science from "Université de Rennes 1"

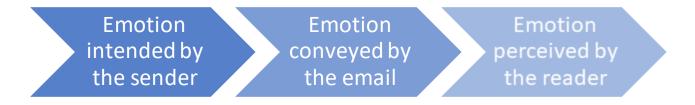
Uneek Customer Relationship Management

How to help CRM users to manage their customer relationship through email?

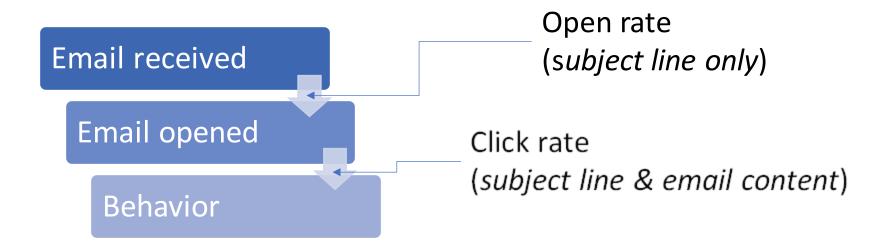
- Analyze the emotions conveyed by the text of email campaigns
- Evaluate how these emotions affect the performance of newsletters



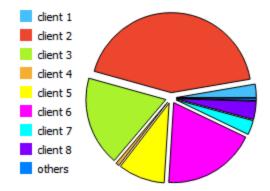
4


Related work – Email analysis

 \bigcirc $\mathbb{I}RISA$


- A baseline approach that considers the 6 fundamental emotions: anger, fear, sadness, joy, disgust and surprise [P.Eckman,1999]
- We added 2 opinion scores: **polarity** and **subjectivity**

- Lack of face-to-face communication and context
- Neutrality or Negativity bias on the perceived emotions [K.Byron,2008; V.Rodriguez et al., 2021]
- Does emotion have an impact on customer behavior?


- Other measures of behavior: purchase rate, unsubscribe rate, etc. [R.Miller et al., 2016]
- We focused on open and click rates: most relevant in our dataset

- Analysis of email campaigns using emotion detection
- Explore correlations between newsletter performance and emotion embeddings
- Test how these correlations can help predict newsletter performance based on emotional tone

- More than 950 non-commercial newsletters
- We assume that the emotions conveyed by the email do not depend on the sender
- Each newsletter is characterized by :
 - a subject line
 - a content text
 - an open rate
 - a click rate

Pearson correlations

Features	Open rate	Click rate
File size (FS)	-0.14***	0.25***
Subject line length (SL)	-0.13***	0.18***
Subject line polarity (SP)	-0.07**	-0.03"
Subject line subjectivity (SS)	-0.01 ^{ns}	-0.07*
Content Polarity (CP)	-	0.09**
Content Subjectivity (CS)	-	-0.07*
Content Joy (J)	-	-0.10**
Content Fear (F)	-	-0.11***
Content Sadness (S)	-	-0.23***
Content Anger (A)	-	$0.06^{n.s}$
Content Surprise (Su)	-	-0.11***
Content Disgust (D)	-	-0.07*
*n-value < 05 **n-value <	01 ***n-value	< 001 ns not significant

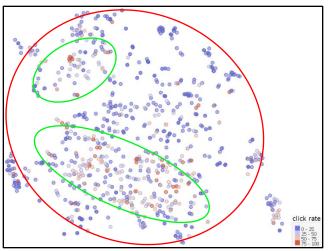
*p-value < .05, **p-value < .01, ***p-value < .001, ns not significant

Known in email features analysis

Little to not significant

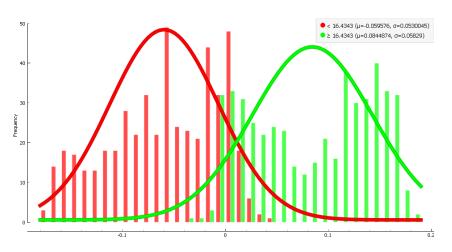
>Inverse associations

• How to determine **the optimal number of clusters**?

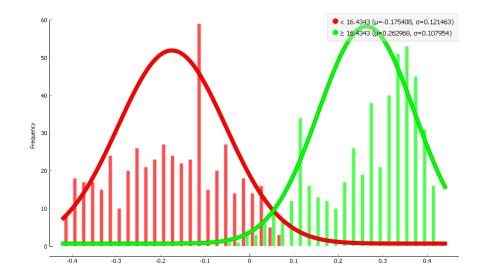

PCA ^a	Explained variance	Number of	silhouette score	
		clusters ^b		
1	24%	2	0.577	
2	40%	2	0.501	
3	53%	4	0.411	
4	63%	2	0.358	
5	72%	2	0.274	
6	79%	2	0.269	
7	86%	3	0.250	
8	91%	2	0.258	— A good compromise
9	96%	4	0.392	
10	100%	4	0.366	

^a Number of PCA components

^b The optimal number of clusters is chosen to maximize the silhouette score



- Are there significant differences in the distribution of emotions between the good (best half) and bad (worst half) newsletters ?
- Bad newsletters seem evenly distributed
- Good newsletters seem to form clusters


t-SNE projection of our dataset

Our work – Silhouette Scores

∮ SIRISA

Silhouette score distribution with subject lines

Silhouette score distribution without subject lines

Classifier	F1 Score	Precision	Recall			
With subject line information						
AdaBoost	0.723	0.724	0.724			
Neural Network	0.712	0.712	0.712			
Random Forest	0.711	0.711	0.711			
kNN	0.681	0.688	0.683			
Naive Bayes	0.666	0.666	0.666			
SVM	0.607	0.617	0.612			
Logistic Regression	0.585	0.594	0.590			
Constant	0.500	0.500	0.500			
Without subject line information						
without s	ubject fille fi	normation				
Model	F1 Score	Precision	Recall			
	~		Recall 0.723			
Model	F1 Score	Precision				
Model AdaBoost	F1 Score 0.722	Precision 0.723	0.723			
Model AdaBoost Neural Network	F1 Score 0.722 0.714	Precision 0.723 0.715	0.723 0.715			
Model AdaBoost Neural Network Random Forest	F1 Score 0.722 0.714 0.710	Precision 0.723 0.715 0.710	0.723 0.715 0.710			
Model AdaBoost Neural Network Random Forest kNN Naive Bayes SVM	F1 Score 0.722 0.714 0.710 0.679	Precision 0.723 0.715 0.710 0.683	0.723 0.715 0.710 0.680			
Model AdaBoost Neural Network Random Forest kNN Naive Bayes	F1 Score 0.722 0.714 0.710 0.679 0.666	Precision 0.723 0.715 0.710 0.683 0.666	0.723 0.715 0.710 0.680 0.666			

Feature	F1-score with a	F1-score with
	single feature	all but one
		feature
Subject line polarity	0.498	0.720
Subject line subjectivity	0.503	0.721
Content Polarity	0.614	0.719
Content Subjectivity	0.570	0.725
Content Joy	0.624	0.723
Content Fear	0.604	0.722
Content Sadness	0.633	0.711
Content Anger	0.018	0.713
Content Surprise	0.614	0.721
Content Disgust	0.626	0.721

- Emotions **influence** the performance of French email campaigns
- **Need for further study** to provide a writing recommender tool
- **Improve** our emotion detection analysis
- **Share our dataset** for reproducibility

BIBLIOGRAPHY

[1] K. Byron, "Carrying too heavy a load? the communication and miscommunication of emotion by email, "The Academy of Management Review, vol. 33, no. 2, pp. 309–327, 2008. [Online]. Available: http://www.jstor.org/stable/20159399

[2] J.-E. Kim and K. Johnson, "The impact of moral emotions on cause-related marketing campaigns: A cross-cultural examination," Journal of Business Ethics, vol. 112, 02 2013.

[3] M. S.-F. Virginie Rodriguez, "Le contenu des communications relationnelles par email des enseignes : Quelle perception par le consommateur?" 2021.

[4] R. Miller and E. Charles, "A psychological based analysis of marketing email subject lines," in 2016 Sixteenth International Conference on Advances in ICT for Emerging Regions (ICTer), 2016, pp. 58–65.

[5] B. Klimt and Y. Yang, "The Enron corpus: A new dataset for email classification research," in Machine Learning: ECML 2004, J.-F. Boulicaut, F. Esposito, F. Giannotti, and D. Pedreschi, Eds. Berlin, Heidelberg Springer Berlin Heidelberg, 2004, pp. 217–226.

[6] R. Kalitvianski, "Traitements formels et sémantiques deséchanges et des documents textuels liés à des activités collaboratives," Theses, Université Grenoble Alpes, Mar. 2018. [Online]. Available: https://tel.archives-ouvertes.fr/tel-01893348

[7] H. Guenoune, K. Cousot, M. Lafourcade, M. Mekaoui, and C. Lopez, "A dataset for anaphora analysis in French emails," in Proceedings of the Third Workshop on Computational Models of Reference, Anaphora and Coreference. Barcelona, Spain (online): Association for Computational Linguistics, Dec. 2020, pp. 165–175. [Online]. Available: https://aclanthology.org/2020.crac-1.17

[8] A. Seyeditabari, N. Tabari, and W. Zadrozny, "Emotion detection in text: a review," 2018.

[9] P.Ekman, Basic Emotions. John Wiley & Sons, Ltd, 1999, ch.3, pp. 45-60. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/0470013494.ch3

[10] A. Abdaoui, J. Az'e, S. Bringay, and P. Poncelet, "FEEL: a French Expanded Emotion Lexicon", Language Resources and Evaluation, vol. 51, no. 3, pp. 833–855, Sep. 2017. [Online]. Available: https://hal-limm.ccsd.cnrs.fr/limm-01348016

[11] A. Kumar, "An empirical examination of the effects of design elements of email newsletters on consumers' email responses and their purchase, "Journal of Retailing and Consumer Services, vol.58, p.102349, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0969698920313576

[12] A. Bonfrer and X. Drèze, "Real-time evaluation of e-mailcampaign performance", Marketing Science, 2009.

[13] U. Yaqub, S. A. Chun, V. Atluri, and J. Vaidya, "Analysis of political discourse on twitter in the context of the 2016 us presidential elections," Government Information Quarterly, vol.34, no.4, pp.613–626, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0740624X17301910

[14] L. Kaufman and P. Rousseeuw, Finding groups in data: an introduction to cluster analysis. John Wiley & Sons., 1990, john Wiley & Sons, New York.

[15] A. Mueller and S. Guido, Machine learning avec Python. O'Reilly Media, Inc., 2018.

16

Thank you for your attention

