A Comparison of Verilog Synthesis Frontends

Daniel Stokes

Daniel Stokes*, Georgiy Krylov†, Jean-Philippe Legault†, Panos Patros*, Kenneth B. Kent†

* ORKA Cloud and Adaptive Systems Lab, Department of Software Engineering, University of Waikato, Aotearoa New Zealand
djns1@students.waikato.ac.nz, panos.patros@waikato.ac.nz
ORCID: 0000-0002-1366-9411

† Centre of Advanced Studies-Atlantic, Faculty of Computer Science, University of New Brunswick, Canada
georgiy.krylov@unb.ca, jlegault@unb.ca, ken@unb.ca
Introduction

● Comparison of Odin-II and Yosys
● Both Verilog synthesis tools
● Odin-II is part of the Verilog-To-Routing (VTR) project
● Yosys is part of the SymbiFlow project
Motivation

- Field Programmable Gate Arrays (FPGAs) are a versatile tool
 - Useful for rapid prototyping, testing and research
 - More flexible than Application Specific Integrated Circuits
 - Lower upfront costs
- Open-source flows enables easier research
 - Experimental FPGA designs
 - New synthesis techniques
Existing Work

- Hung* demonstrated that Yosys tends to perform better, but Odin-II is ahead in some aspects
- Missing some runtime metrics
- Significant improvements in both tools since

Area Utilisation for a range of Verilog benchmarks. Lower is better.

Verilog To Routing (VTR)

- Computer Aided Design (CAD) flow for FPGAs
- Open Source
- Written in C/C++
SymbiFlow

- Open Source project targeting commercial FPGAs
- Uses Yosys and VPR
Experiment Outcomes

- Produce a framework for future comparison
 - Against different architectures
 - Against different benchmarks
- Compare Quality of Result (QoR) of both tools
- Compare runtime characteristics of both tools
Full Benchmark Flow
Benchmark Methodology

- Select a range of compatible benchmarks
- Run each benchmark through both tools
 - This was repeated when gathering runtime statistics
- Run through VPR 10 times
 - VPR placement is non deterministic
- Gather QoR metrics output by VPR
 - Critical path delay, Logic area used
- Gather runtime metrics for each stage
 - Max. Resident Set Size (RSS), Total runtime
Artix-7 XC7A200T Architecture

- Popular line of FPGAs
- Provides benchmarks with real world basis
- Large enough for all benchmarks to place and route
- SymbiFlow project has built a VPR architecture description
Benchmarks

- Benchmark from VTR’s benchmark suite
- Supported by Odin-II
- Cover a wide range of real world uses
- Variety of sizes

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>and latch</td>
<td>Trivial</td>
</tr>
<tr>
<td>bgm</td>
<td>Finance</td>
</tr>
<tr>
<td>blob merge</td>
<td>Image Processing</td>
</tr>
<tr>
<td>diffeq1</td>
<td>Math</td>
</tr>
<tr>
<td>diffeq2</td>
<td>Math</td>
</tr>
<tr>
<td>mkPktMerge</td>
<td>Packet Processing</td>
</tr>
<tr>
<td>multiclock output and latch</td>
<td>Trivial</td>
</tr>
<tr>
<td>multiclock reader writer</td>
<td>Trivial</td>
</tr>
<tr>
<td>sha</td>
<td>Cryptography</td>
</tr>
<tr>
<td>single ff</td>
<td>Trivial</td>
</tr>
<tr>
<td>single wire</td>
<td>Trivial</td>
</tr>
<tr>
<td>stereovision0</td>
<td>Computer Vision</td>
</tr>
<tr>
<td>stereovision1</td>
<td>Computer Vision</td>
</tr>
<tr>
<td>stereovision2</td>
<td>Computer Vision</td>
</tr>
<tr>
<td>stereovision3</td>
<td>Computer Vision</td>
</tr>
</tbody>
</table>
Results - Critical Path Delay

- Determines the maximum clock frequency
- Yosys geomean 86% of Odin-II
Results - Critical Path Delay >1000 blocks

- Only benchmarks with >1000 blocks when synthesized with Odin-II
- Yosys geomean 66% of Odin-II

Normalised critical path delay of Odin-II vs Yosys flow for benchmarks with >1000 blocks
Results - Logic Area Used

- Influences the minimum size FPGA
- Influences power consumption
- Yosys geomean 89% of Odin-II

Normalised logic area used for Odin-II vs Yosys flow
Results - Logic Area Used >1000 Blocks

- Only benchmarks with >1000 blocks when synthesized with Odin-II
- Yosys geomean 91% of Odin-II

Normalised logic area used for Odin-II vs Yosys flow for benchmarks with >1000 blocks
Results - Synthesis Memory Consumption

- Measures Maximum Resident Set Size (RSS)
- Includes ABC, but not VPR
- Yosys geomean 510% of Odin-II
- Relevant for
 - Small architectures
 - Verilog synthesis research
 - Circuit simulation

Max. RSS (KiB) for Odin-II vs Yosys synthesis
Results - VPR Memory Consumption

- Measures max. RSS
- Only includes VPR
- Much larger than max. RSS for synthesis step
- Dominated by architecture size
 - For smaller architectures synthesis may dominate
Results - Synthesis Run Time

- Total run time of synthesis
- Only benchmarks >1000 blocks
 - Otherwise launch overheads dominate
- Includes ABC, but not VPR
- Yosys geomean 40% of Odin-II

Total runtime for Odin-II vs Yosys synthesis
Results - VPR Run Time

- Total run time of VPR
- Only includes VPR
- Only benchmarks >1000 blocks
- Yosys geomean 119% of Odin-II

Total run time of VPR in Odin-II flow vs Yosys flow
Results - Total Flow Run Time

- Total run time for entire flow
- Only benchmarks >1000 blocks
- Synthesis + VPR time
- Yosys geomean 67% of Odin-II

Combined runtime for full Odin-II vs Yosys flow
Limitations

● Yosys has been tuned against the Artix-7 family used in this comparison

● Technology mapping was disabled for this comparison
 ○ This ensured a fair comparison as Odin-II did not recognise the hard-blocks in the XC7A200T architecture
 ○ An important feature for real use cases

● The benchmarks used come from Odin-II’s benchmark suite
Future Work

- Compare a broader range of architectures
- Compare a broader range of benchmarks
 - This may require improvement to Odin-II’s language coverage
 - Titan Benchmark suite is a modern candidate
- Add hard-block support for Artix-7 family to Odin-II
 - Revisit this comparison with technology mapping enabled
Conclusion

● How do Odin-II and Yosys compare?
● Produced a framework to compare synthesis flows
 ○ Supports different architectures
 ○ Supports different benchmarks
● Gathered QoR and run time metrics for both tools
● Yosys tends to outperform Odin-II in most applications
 ○ Better in most run time and QoR metrics
● Odin-II synergises well with VPR out of the box