Limits of a Glucose-Insulin Model to Investigate Intestinal Absorption in Type 2 Diabetes
IARIA BIOTECHNO 2021

Danilo Dursoniah, PhD student, BioComputing team, CRIStAL
danilo.dursoniah@univ-lille.fr

University of Lille, France

May 28, 2021

Joint work with: CRIStAL (UMR 9189): Cedric Lhoussaine, Maxime Folschette
INSERM (UMR 1190): François Pattou, Violeta Raverdy, Rebecca Goutchtat
Danilo Dursoniah

PhD student, 2nd year, BioComputing research team, CRIStAL Lab.

Education:

- BSc Biotechnology, Grenoble Alpes Univ. (2014 - 2017);
- MSc Bioinformatics, Univ. of Paris-Saclay (2017 - 2019);

Thesis topic:

Computational Models of Intestinal Glucose Absorption for Diabetes Prediction.

Directors: Cedric Lhoussaine (Prof.), François Pattou (Prof.)

Supervisor: Maxime Folchette (Assoc. Prof.)

Interests: Formal modeling - Clinical study - Medical biotechnology

Contact:
danilo.dursoniah@univ-lille.fr
https://www.cristal.univ-lille.fr/profil/ddursoni/
Type 2 Diabetes (T2D)

Definition

Chronic metabolic disease characterized by:

- lack of insulin secretion \rightarrow hypoinsulinemia;
- inability of the body to use insulin \rightarrow hyperglycemia;
- perturbated glucose and insulin homeostasis;
- high prevalence: 400 millions affected \rightarrow 90% of diabetics;
- limited therapeutic solutions.

Challenges

- Type 2 diabetes is a major public health issue.
- Identifying new therapeutic targets.
Type 2 Diabetes (T2D)

Hypothetical Causes

- High-carbohydrate diet.
- Sedentary lifestyle.
- Excess of intestinal glucose absorption → High rate of glucose appearance.

Problematic

- How much impact does glucose intestinal absorption have on T2D?
 → Hypothesis based on clinical observations.

- How can a standard glucose-insulin model take into account such hypothesis?
 → Limits of the standard model.
Roux-en-Y Gastric Bypass (RYGB)

Figure: Roux-en-Y Gastric Bypass (RYGB). UCLA Health: http://surgery.ucla.edu/bariatrics-gastric-bypass

RYGB leads to weight loss and glucose-insulin homeostasis restoration.
Clinical Observations After a Meal

Dataset

Clinical datasets collected and provided by Inserm collaborators, from obese patients, **before** and **after** surgery.

Figure: Average glycemia and insulinemia on 180 minutes, after a meal.

⇒ **After surgery:** good glucose and insulin homeostasis restoration.
Meal Simulation Model of the Glucose-Insulin System

Reference Model

Standard, highly cited model from:

System of ordinary differential equations (ODEs):

- **12 dependent ODEs**, functions of time;
- **36 pairs of parameters values**:
 - non-diabetics;
 - diabetics.
- **No original dataset provided by the modellers** → low reproductibility → model validation from our dataset.
- Equations distributed in **7 biological modules** corresponding to biological functions: gastro-intestinal tract, liver, pancreas, etc.
Graph representation of the reference model

RYGB simulation \iff Modifying gastro-intestinal parameters values

1. How much does each biological module contribute to glucose-insulin homeostasis restoration?
2. Can the model predict our own dataset of diabetic patients?
3. Can the model predict glucose-insulin homeostasis restoration after RYGB?
Parameters estimation (optimization problem):

- **Estimated parameter values**: all or parts;
- **Fitted variables**: Glycemia and Insulinemia.
- **Objective function**: maximum likelihood or MSE etc.

initial parameters $\xrightarrow{\text{estimation}}$ inferred parameters $\xrightarrow{\text{model}}$ inferred variables.
1. How much does each biological module contribute to glucose-insulin homeostasis restoration?

Figure: Inferred glycemia and insulinemia for gastro-intestinal tract

Initial parameters: diabetic parameters of [DallMan2007];

Fitted variables: non-diabetic glycemia and insulinemia of [DallMan2007];

Inferred parameters: only gastro-intestinal tract

Errors computed between healthy objective model and best estimated fit.
1. How much does each biological module contribute to glucose-insulin homeostasis restoration?

Contribution of each functional module to glucose homeostasis (low error = good contributor)
2. Can the model predict our own dataset of diabetic patients?

Initial parameters: diabetic parameters from [DallaMan2007];
Fitted variables: own dataset of pre-surgery glycemia and insulinemia;
Inferred parameters: all parameters (36).
⇒ good fitting despite very different diabetic population than [DallaMan2007].
3. Can the model predict glucose-insulin homeostasis restoration after RYGB?

Initial parameters: previous pre-surgery estimated parameters;

Fitted variables: own dataset of post-surgery glycemia and insulinemia;

Inferred parameters: only gastro-intestinal tract (simulation of RYGB).

⇒ bad fitting.
1. From *Inserm* collaboration: animal datasets (Mini Pigs). Exploring populations dataset, **before** and **after** different experiments:
 * Pancreatectomy
 * Small bowel resection
 * Metabolic modulation for obesity

 More homogenous values. Better reproductibility for model validation.

2. New variables to fit
 * D-xylose → rate of glucose appearance
 * C-peptide → insulin secretion

 Would increase the parameters identifiability.
Discussion

- Struggle to fit our datasets.
- Shifting model validation criteria: from accurate fitting to qualitative validation.
- Building up a new model based on experimental data: more qualitative and explicative for the glucose intestinal absorption on type 2 diabetes prediction.
- Integrating more equations in a new model to explain intestinal glucose absorption.
Questions?