Tutorial on Sensors and Pattern Recognition for Localized Control of Weeds in Agriculture

Paulo E. Cruvinel, Ph.D.
Brazilian Corporation for Agricultural Research (Embrapa)
Post Graduation Program in Computer Science - Federal University of São Carlos (UFSCar, Brazil)
paulo.cruvinel@embrapa.br.
Outline

1. Application technology for agricultural pest control
2. Precision agriculture (sensors, geomatics and image processing to plant control)
3. Example of a method for invasive plant control
4. Conclusions
Literature review (State of the Art)

- Sensors, Digital image processing techniques related to image capture and acquisition, image quality metrics, filters and classifiers.
- search strings
- Bibliographic databases and search engines.
Tutorial objective

To learn about the identification of plant’s families in agriculture based on sensors, image processing, and pattern recognition techniques.
Pests control in agriculture

100,000 species of phytopathogenic fungi
30,000 species of invasive plants
10,000 species of herbivorous insects
15,000 species of Phytophagous Nematodes

Damage in the order of 40%
The application technology consists on the adoption of all available technical knowledge to provide the correct placement of a biologically active product (agrochemical) on the target (which involves the complex plant, pest, soil, atmosphere and environment).
Standards

Droplet Size Measurement and Classification

ANSI/ASAE S572.1 MAR2009
Spray Nozzle Classification by Droplet Spectra

American Society of Agricultural and Biological Engineers
Terrestrial Application

Self-propelled sprayers stand out, which are automotive equipment that develop very high operating performance in pesticide applications, reaching up to 50 ha./h.

• Conventional Application Technology with bar arrangement;

• Application Technology in Variable Doses with Digital Maps;

• Application Technology in Variable Doses with Sensors.
Terrestrial spraying equipment with embedded technology for application in varied doses based on the use of sensors, where:

(1). Biological target sensor (such as invading plant);
(2). On-board computer for general control of the application system;
(3). GPS receiver, connected to speed camera;
(4). Syrup reservoir (water + pesticide);
(5). System with spray nozzles.
Nozzles for Spraying and subsequent Application

The nozzles are the final components of the sprayer's hydraulic circuit. The solution to be applied, under pressure, is forced to pass through a small opening, forming a thin sheet that disintegrates into small particles or drops.

(a) - Body;
(b) - Filter;
(c) - Cover;
(d) - Tip.
Applications that have the same VMD, however with different dispersion coefficients and relative amplitude, and the importance of the values of $D_{V0.1}$, VMD and $D_{V0.9}$ (Christofoletti, 1992 and Ozeki, 2006).
Flow Calculation

\[L \cdot \text{min}^{-1} = L \cdot \text{ha}^{-1} \times \text{km} \cdot \text{h}^{-1} \times W \times 60000^{-1} \]

where \(L \cdot \text{min}^{-1} \) is the Flow in liters per minute; \(L \cdot \text{ha}^{-1} \) is the volume of application given in liters per hectare; \(\text{km} \cdot \text{h}^{-1} \) is the Displacement Speed of the applicator in km per hour and \(W \) is the spacing between nozzles (cm).
Quality of the Application

The drop formation in agricultural spraying is directly related to the application quality.

The nozzle type, the agrochemical physical properties, the drift produced by the wind and other climate factors affect the size, volume and distribution of drops.

Also, variations in the nozzles fluidic resistance affect the quality of the application.

The fluidic hydraulic resistance:
function of the flow regime being dependent of the Reynolds number and the relative pipe.

\[\text{[bar \cdot min \cdot L}^{-1}] \]
Laboratory Infrastructure (Facilities)

Chapter 10
An Advanced Sensors-based Platform for the Development of Agricultural Sprayers

Paulo E. Cruvinel, Vilma A. Oliveira, Helor V. Mercaldi, Elmer A. G. Peñaloza, Kleber R. Felizardo

10.1. Concepts of Pesticide Application Technology in Agriculture

The definition of the parameters such as the size of the drops and application volume depend directly on the ratio (target/pesticide) relationship. The liquid agricultural inputs can be applied directly to the soil or even to the plants or their leaves with lower density of drops, i.e., allowing the use of larger droplets. Therefore, this facilitates the adoption of techniques for reduction of the drift, and allows improving of security in relation to the application, as well as the use of machinery capable in relation to the use of the sprayers and its efficiency. If used properly the large droplets, they can provide adequate deposit levels. Such deposits are related with the amount of pesticide, or its volume, deposited in the target [1].

The agricultural pest management also requires controllers and adequate climatically coverage conditions. Although the use of larger droplets could be apparently indicated, in first approximation, as ideal for the operation, the truly pest management requires a better control of the applied pesticides with the problem to be treated. Thus, by using smaller droplets become possible to reach improvements in the efficiency, i.e., since such processes are not linear, such initiatives should be associated with knowledge, intelligence and adequate application technology.

Besides, since there are a large diversity of pests and changes in their dynamics behavior in environment, for each different agricultural crop, and as a function of its geographical locations and climate, it is required one specific solution. In other words, in terms of pesticide application for pest control there are not only one solution for everything [2]. That’s why the solution in relation to pest management in agriculture is still an open field for research, development, and innovation, mainly for the area relating

Precision Farming Application Laboratory
Experimental arrangement for data collecting
Communication using CAN network

A CAN communication was evaluated using one set of solenoid valves and a driving strategy.

The flow rate settling time was measured for regulated pressures 100kPa and 200kPa.

- Design control strategies, modelling the application errors, application rate response and transport delay.
- Variable-rate predictive control approach.

Evaluation of applications errors based on kinematics model of an agricultural sprayer

Illustrating the variable rate concept

Fundamental in Digital Image Processing

Knowledge base to support decision making
Principal Component Analysis - PCA

Its general objective is to reduce the dimensionality of a dataset and improve the performance of the analysis process. For instance, grouping into a single feature vector of the results obtained by the HOG and Hu Invariant Moments methods. Extraction of relevant features avoiding information redundancy.
Feature extraction

Textural analysis
statistical approach
coop-occurrence matrix

\[P(i,j,\theta,d) \]
Feature extraction

\[
\text{Energy} = \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} P_{\delta,\theta}(i, j)^2
\]
Feature extraction

Entropy

\[\text{Entropy} = \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} P_{\delta,\theta}(i, j) \log (P_{\delta,\theta}(i, j))\]
Feature extraction

Contrast

\[\text{Contrast} = \sum_{k=0}^{N_g-1} K^2 \left[\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} P_{\delta,\theta}(i, j) \right], \text{se } |i - j| = k \]
Feature extraction

Homogeneity

\[\text{Homogeneity} = \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} \frac{1}{1 + (i - j)^2} P_{\delta,\theta}(i, j) \]
Feature extraction

Correlation

\[
= \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} \frac{(i - \mu_x)(j - \mu_y)P_{\delta,\theta}(i, j)}{\sigma_x \sigma_y}
\]
Classification

Support Vector Machine (SVM)

\[w \cdot x + b = 0 \]

\[w \cdot x_i + b \geq 1 \quad \text{se} \quad y_i = +1 \]

\[w \cdot x_i + b \leq 1 \quad \text{se} \quad y_i = -1 \]

\[y_i(w \cdot x_i + b) - 1 \geq 0, \quad \forall (x_i, y_i) \in X \]
Edge Spread Function and Line Spread Function
Modulation Transfer Function

The Modulation Transfer Function of the Edge

- Smoothed MTF
- Fitted LSF (Gaussian)
- Raw MTF

Amplitude vs Frequency distribution (mm\(^{-1}\))
Camera Parameters

With a narrow MTF (around 3 mm\(^{-1}\)), it was also desirable to verify whether the values of the field of view provided by the manufacture are in agreement. It was considered the pixel size of 1.4 \(\mu\)m x 1.4 \(\mu\)m, the focal length 3.6 mm and the sensors resolution of 2592 x 1944 pixels.

Calculated values:

\[
\begin{align*}
W_s &= (s_x)(W) = (1.4\mu)(2592) = 3.63 \text{ m} \\
H_s &= (s_y)(H) = (1.4\mu)(1944) = 2.72 \text{ m} \\
D_s &= \sqrt{W_s^2 + H_s^2} = 4.54 \text{ mm} \\
HFOV &= 2 \arctan(W_s/2f) = 53.5^\circ \\
VFOV &= 2 \arctan(H_s/2f) = 41.4^\circ \\
DFOV &= 2 \arctan(D_s/2f) = 64.4^\circ
\end{align*}
\]

Manufacture values:

\[
\begin{align*}
W_s &= 3.76 \text{ m} \\
H_s &= 2.74 \text{ m} \\
D_s &= 4.65 \text{ mm} \\
HFOV &= 53.50^\circ \pm 0.13^\circ \\
VFOV &= 41.41^\circ \pm 0.11^\circ \\
DFOV &= 65.7^\circ
\end{align*}
\]

The cameras have a good response with a MTF near a Dirac delta function and with a wide field of view.
Disparity and depth resolution against distance

\[Z = \frac{bf}{d}, \quad \Delta Z = Z - \frac{bf}{d + \Delta d} = \frac{Z^2 \Delta d}{bf + Z \Delta d} \approx \frac{Z^2 \Delta d}{bf} \]
From the graphic, the stereo parameters were set. Considering that the distance between the camera plane and the captured image is equal to 50 cm, a good baseline to avoid distortions and to ensure a good stereo representation can be considered as equal to 6 cm, with maximum disparity around 300 pixels.
Pseudo-code Algorithm and Resulting Disparity Map

Begin
Set parameters (window size w and number of disparities n);
 Read image sizes; they must have the same height and width;
 Initiate the disparity map, matching cost, pixel cost and window cost with zero values;
 Calculate pixel cost for the n disparities using the absolute difference of two images;
 Calculate integral cost of the pixel cost with cumulative sums;
 Calculate window cost using the integral cost convoluted with a matrix h (h is a square matrix of size w with $h(1, 1) = h(w, w) = 1$, $h(1, w) = h(w, 1) = -1$ and otherwise equal to zero);
 Search disparity value by finding the minimum window cost;
 If specified, do the subpixel interpolation using polynomial fit;
end.

It was used $w = 5$ and $n = 300$.
Image processing process for each plot
Component (R – G) Median Filtering Binary image
Textural mapping for the leaves

ROI

Segmented image
Plots and an experimental agricultural field

Model: Gaus ($C_0=16.5; C_1=92.3; A=1.3$)

Model: Gaus ($C_0=9.2; C_1=50.2; A=1.6$)
Method validation

Validation on the agricultural field
Computational vision versus Expert vision

\[y = 0.6062x - 0.0004 \]
\[R^2 = 0.8017 \]
Map of % occupancy of *Cenchrus echinatus* L. (Narrow leaf) in corn planting area
This example of a project shows that there was a gain for the figure of cost/benefit merit, as well as for the rational use of pesticides based on the identification of the invasive plant family species. Additionally, the determination of the occupancy rate and its spatial distribution allowed the definition of application maps based on a new approach considering zones for the management of the invasive plant. Future works allow us to aim for real-time control with the use of architectures that can bring greater computational performance and operation based on the developed method.
Thank you for your attention!