Ozone Sensors Based on WO$_3$ Sputtered Layers Enhanced by Ultra Violet Light Illumination

Clément OCCELLI, Ph.D. Student

clement.occelli@im2np.fr

IM2NP UMR CNRS 7334

Clément Occelli, Sandrine Bernardini, Ludovic Le Roy, Tomas Fiorido, Jean-Luc Seguin, Carine Perrin-Pellegrino
Clément Occelli received his engineering degree in Materials from the Polytech’Marseille engineering school, Marseille, in 2016. During this period, he was at the IM2NP institute at the Aix-Marseille University in France for 3 months, working on WO$_3$ sensor for ozone detection. He was in industry from 2017 until 2019 where his work was focused on materials and products testing. He is currently a 2nd year Ph.D. student back to the IM2NP Institute, developing hydrogen sensors for anaerobic environment.
I. Context, technology and detection principle
 a) A gaz to monitor: ozone
 b) Operating principle and sensor structure
 c) Ozone detection by sensitive film

II. Thin film deposition and crystalline structure
 a) WO₃ thin film deposition
 b) XRD diffractogram of WO₃ thin film

III. Sensor electrical characterization
 a) Sensor test bench
 b) UV illumination effect
 c) Sensor response for different sputtering parameters
 d) Comparison UV/heating

IV. Conclusion
I. Context, technology and detection principle
- Ozone presence in troposphere due to human activity:

 ![Diagram of Ozone formation](image)

 Heat / Solar radiation → VOCs → NOx → Ozone formation

- Ozone has hazardous impact on fauna and flora health

 European and american environmental agency report respiratory symptoms for O_3 concentrations > 60ppb

 Severity

 1. Cough, Wheezing, throat irritation
 2. Asthma attack and other respiratory disease
 3. Hospitalization

 ➔ Monitor and control O_3 concentration in air
Operating principle and sensor structure

1) Sensitive film (WO$_3$)
 - Gas interaction

2) Measuring electrode (Pt)
 - Information reading

3) Substrate (Si/SiO$_2$)
 - Electrical insulation

4) Heating device
 - Reaction control

Target Gas

Chemical Reaction

Dimension: 4x4mm
Electrode thickness: 100nm
Electrode gap: 50μm
Ozone detection by sensitive film

- O$_3$ decomposes on WO$_3$ surface by reacting with free charge carriers

Upon increasing [O$_3$]:
\[
\text{O}_3\text{(gas)} + e^- \rightarrow \text{O}^-\text{(ad)} + \text{O}_2\text{(gas)}
\]
Resistivity increase

Upon decreasing [O$_3$]:
\[
2\text{O}^-\text{(ad)} \rightarrow \text{O}_2\text{(gas)} + 2e^-
\]
Resistivity decrease

Needs elevated temperature (250-300°C) to bring energy allowing oxydo-reduction reactions.

Drawbacks: high power consumption, material ageing, no flexible substrate

→ UV illumination creates free charge carriers allowing lower operating temperature
II. Thin film deposition and crystalline structure
WO$_3$ thin film deposition

- **Film Deposition**
 Reactive RF magnetron sputtering
 Argon/oxygen ratio → 3:2 ; 1:1; 2:3
 Thin layer : 50nm

- **Annealing**
 On plate 2h at 400°C in air,

- **EDXS measurements** (after annealing)
 Identical chemical composition for all 3 samples
 Quasi stoichiometric : 77%O ; 23%W
- Analyse of transducer without and with WO$_3$ films
- Comparison between 3 samples with different Ar/O$_2$ deposition ratio

* Peaks correspond to the ones on reference spectra (Pt and Si/SiO$_2$)
and o peaks match Monoclinic WO$_3$ structure
(002) and o (200) lowest peaks vary with Ar/O$_2$ ratio \rightarrow grain growth influence
III. Sensor electrical characterization
Sensor test bench

Dry Air Generator → MFC → Ozone Generator → Sensor Chamber → Exhaust

Data Acquisition System → Sourcemeter

Dry air flow rate: 500 sccm
O₃ in dry air: 30 ppb; 65 ppb; 120 ppb
Operating temperature: 50°C
UV illumination effect

- Illumination of WO$_3$ with photon energy higher than indirect band gap (2.6-2.8 eV) \rightarrow creation of free electrons \rightarrow reaction

O$_3$ gas reacts even at low temperature \rightarrow response amplitude remains low

Need to improve sensor response ... !!!

\[E = \frac{h \times c}{\lambda} = 3.16 \text{ eV} \]

UV illumination at 50°C
Sensor response for different sputtering parameters

✓ O₃ detection for all 3 samples at 50°C

✓ Best response for Ar/O₂ ratio of 3:2

No stabilization in 60s O₃ exposure nor complete desorption in 240s → slow process compared to high temperature operating

UV illumination at 50°C

Dark at 250°C
✓ 30, 65 and 120 ppb O₃ detected for all samples

Under UV and low temperature: best response for Ar/O₂ ratio of 3:2

Under Dark and high temperature: best response for Ar/O₂ ratio of 1:1
IV. Conclusion
Ar/O₂ sputtering gas ratio affects the film microstructure

Optimization of sensor performance through Ar/O₂ ratio during sputtering

✓ UV illumination enables low temperature operating
 → Power consumption decreases

✓ Best results under UV for Ar/O₂ ratio of 3:2

✓ O₃ detection for 30, 65 and 120ppb

Ozone decomposition on WO₃ remains a slow process
• No response stabilization
• Long response and recovery time
• Small response amplitude

For better understanding → complementary measurements of microstructure
Acknowledgments

IM2NP, MCI and RDI Teams

Ph.D Student
OCCELLI Clément

Dr. BERNARDINI Sandrine

Master Student
LE ROY Ludovic

Dr. FIORIDO Tomas

Pr SEGUIN Jean-Luc

Dr. PERRIN-PELLIGRINO Carine

Contact authors:
clement.occelli@im2np.fr sandrine.bernardini@im2np.fr tomas.fiorido@im2np.fr
Thank you for your attention

Relier le fondamental aux applications dans nos domaines d’expertise

www.im2np.fr