Drifting and Popularity: A Study of Time Series Analysis of Topics

Muhammad Haseeb UR Rehman Khan(Presenter),
Kei Wakabayashi
s2036048@s.tsukuba.ac.jp
University of Tsukuba, Japan
About Me

Research in the field of NLP, Machine Learning especially in Topic Modeling

● PhD in Informatics, University of Tsukuba, 2020-2023

● MS in Library and Information Studies, University of Tsukuba, 2018-2020
Topic Modeling
Unsupervised way of summarizing and categorizing document

Time series features of topics

Topic Drifting
Transitions of topics over time

Topic Popularity
Topic proportion estimation w.r.t time
Topic Models

LDA (37,000 citations)
Latent Dirichlet Allocation[1]

Draws a static set of topics

DTM (2,700 citations)
Dynamic Topic Models[2]

Assumes dynamic drift of distributions
Koike et al. [3] proposed a method that draws a time series graph to find the bursty topic detection.

- Used a subset of **Twitter data** (keywords based queries) and news
- Used **DTM** with **$K = 50$**
Khan et al. [4] performed similar type of experiment and made time series graphs of topics for multiple purposes.

- Used full TREC Twitter data Tweets2011
- Used LDA with $K = 1000$
- We believe that there are many diverse topics in Twitter
If time series topic information can be extracted by using LDA then why do we need to use DTM?

Problem Statement:

Can time series topic information be extracted from LDA without using DTM?

Draw empirical Insights by using multiple datasets and configurations

topic information means topic drifting and topic popularity
LDA Training and Inference
LDA Model Training

- LDA assumes a z_i for each word w_i in a document and draws a θ_d for d.
- The $w_i \in W$ is drawn from a distribution of words associated to the assigned topic $z_i=k$ which is denoted by ϕ_k.
- We use $X = \{x_1, \ldots, x_D\}$ as training dataset for LDA.
- If we apply a pooling method (for short text dataset), x_d consists of multiple text instances, and number of instances is T_d.
Time Series Topic Estimation by LDA (Inference)
Let’s call it TSLDA

- Create inference dataset by associating x_d with time slice t
- If no pooling then $T_d = 1$
- Estimate the topic distribution θ_d for each document
- Calculate the estimated number of documents for each topic k at each time slice t using:

$$N_{tk}^t = \sum_{d: x_d \in X_t} \theta_{dk} T_d$$

- θ_d is computed using Dirichlet distribution

$$p(\theta_d | x_d) = \sum_{z} p(\theta_d | z) p(z | x_d)$$
Similarity Analysis of Both Topic Models
LDA and DTM Topics Similarity Analysis
By Jensen-Shannon Divergence

To check the relationship between both set of topics, we used JS divergence similarity measure

\[
JSD(\tilde{\phi}_k||\tilde{\phi}_j) = \frac{1}{2}D_{KL}(\tilde{\phi}_k||T_M) + \frac{1}{2}D_{KL}(\tilde{\phi}_j||T_M)
\]

Where

\[
T_M = \frac{1}{2}(\tilde{\phi}_k + \tilde{\phi}_j)
\]

\(\tilde{\phi}_k\) is \(k\)th LDA topic

\(\tilde{\phi}_j\) is \(j\)th DTM topic at \(t\)

\(D_{KL}(\phi_1||\phi_2)\) is the Kullback-Leibler divergence

\[
D_{KL}(\phi_1||\phi_2) = \sum_{w \in W} P(w|\phi_1) \log \frac{P(w|\phi_1)}{P(w|\phi_2)}
\]
LDA and DTM Topics Similarity Analysis using Jensen-Shannon Divergence

\[\text{JSD}(\phi_{(\text{LDA 55})} \| \phi_{(\text{DTM 0})}) \leq 0.7 \quad \text{(RT)} \]
\[\text{JSD}(\phi_{(\text{LDA 19})} \| \phi_{(\text{DTM 0})}) \leq 0.7 \quad \text{(RT)} \]

So,

LDA 19 & 55 are Fragmented Topics of DTM 0
Experiment
Datasets and K

NeurIPS

- 1987
- 1988
- 1989
- 1990
- 1991
- 1992
- 1993
- 1994
- 1995
- 1996
- 1997
- 1998
- 1999
- 2000
- 2001
- 2002
- 2003
- 2004
- 2005
- 2006
- 2007
- 2008
- 2009
- 2010
- 2011
- 2012
- 2013
- 2014
- 2015
- 2016
- 2017

News

- 01/2016
- 02/2016
- 03/2016
- 12/2016
- 01/2017
- 02/2017
- 10/2017
- 11/2017
- 12/2017

Twitter

- 23/01/2011
- 24/01/2011
- 25/01/2011
- 06/02/2011
- 07/02/2011
- 08/02/2011

Number of Topics(K): 30, 60, 90 (Analysis)
Results

• Training time
• Topic drifting
• JS analysis (Fragmentation)
• Time dependent topic popularity
Training Time Cost

DTM and LDA trained on Twitter dataset

DTM 10X in training

DTM 100X in training
Topic Drifting

DTM trained on **dataset** and K one at a time
V_s is all unique words in t (*Higher V_s \rightarrow More drifting*)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Topics</th>
<th>$K(V_s > 70)$</th>
<th>$K(V_s > 90)$</th>
<th>$K(V_s > 120)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>NeurIPS</td>
<td>30</td>
<td>13</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>58</td>
<td>56</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Twitter</td>
<td>30</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>News</td>
<td>30</td>
<td>29</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>57</td>
<td>33</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>83</td>
<td>37</td>
<td>2</td>
</tr>
</tbody>
</table>

Strong Drifting

No Drifting

Weak Drifting
Fragmentation by JS Analysis

FT values are number of DTM topics being fragmented into two (**F2**), three (**F3**) or more (**F4&more**) LDA topics.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Topics</th>
<th>RT</th>
<th>FT</th>
<th>F 2</th>
<th>F 3</th>
<th>F 4 & more</th>
</tr>
</thead>
<tbody>
<tr>
<td>NeurIPS</td>
<td>30</td>
<td>17</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>42</td>
<td>16</td>
<td>11</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>69</td>
<td>28</td>
<td>25</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Twitter</td>
<td>30</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>14</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>News</td>
<td>30</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>24</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>42</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

High Fragmentation
Follow prior docs

No Fragmentation
Instantaneous responses of events
Die quickly
Time Dependent Topic Popularity

Using TSLDA, Computed θ_{dk}
Calculated N_k^t
and built graphs

N_{41}^{10} \parallel N_{41}^{15} \parallel N_{41}^{25}

N_{12}^{10} \parallel N_{12}^{15} \parallel N_{12}^{25}
Topic Transition Information Embedded with DTM (Not good for topic popularity analysis)

- Information retrieval from documents
- Drifted
- Document analysis with LDA

Variational topic model LDA
Key Points

Topic Drifting

- No topic drifting in *Twitter* so only topic popularity for such datasets
- For *NeurIPS*, TF increased with an increase of K, means high topic drifting for higher K
- For *News*, because V_s is low, it is weak topic drifting

Topic Popularity

- We can *construct* topic popularity graphs for *both models*
- DTM topics have topic transition information embedded with topics so it’s little vague from *DTM*
• **Training time** for DTM was 100X more as compared to LDA for large datasets.

Can time series *topic information* be extracted from LDA without DTM? (RQ)

• **Topic drifting** is a unique property of DTM, but some datasets like Twitter do not have topic transition information, so applying DTM to such datasets is waste of resources.

• Time series **topic popularity** can be extracted from both models, but topic popularity extracted using LDA is precise as compared to DTM because DTM has topic transition embedded in the topics.

topic information means topic drifting and topic popularity
Suggestions Based on Findings

<table>
<thead>
<tr>
<th>Use LDA for</th>
<th>Use DTM for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twitter with high K</td>
<td>NIPS data with few number of topics</td>
</tr>
<tr>
<td>News with high K</td>
<td>News with smaller K</td>
</tr>
<tr>
<td>Short duration datasets e.g. Twitter</td>
<td>Long duration docs e.g. NIPS</td>
</tr>
<tr>
<td>Extract topic popularity</td>
<td>Extract topic drifting</td>
</tr>
</tbody>
</table>
Thank You!

Any Questions

s2036048@s.tsukuba.ac.jp