Innosuisse - Swiss Innovation Agency

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Lucerne University of Applied Sciences and Arts

HOCHSCHULE LUZERN

Information Technology

Pattern Dependent Optimized Mowing of Football Fields with an Autonomous Robot

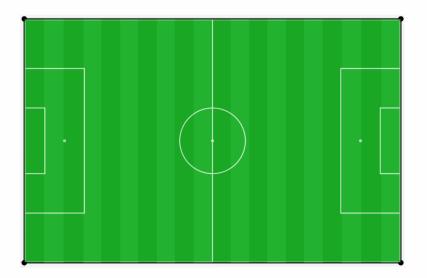
Dr. Tahir Majeed Ramón Christen Michael Handschuh Prof. Dr. René Meier

Mobile and Smart Systems

The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences ADVCOMP 2021 October 03, 2021 to October 07, 2021 - Barcelona, Spain

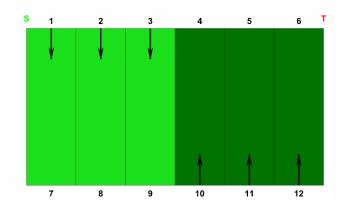
Overview

- Football Field Mowing with Pattern
- Approach
- Results
- Conclusion


Hochschule Luzern Information Technology

Football Field Mowing with Pattern

Football Field Patterns



Hochschule Luzern Information Technology

Cost Matrix

	S	1	2	3	4	5	6	7	8	9	10	11	12	T
S	∞	1	∞											
1	∞	∞	166	333	499	642	784	1000	∞	∞	∞	∞	∞	∞
2	∞	166	∞	166	333	475	618	∞	1000	∞	∞	∞	∞	∞
3	∞	333	166	∞	166	309	451	∞	∞	1000	∞	∞	∞	∞
4	∞	499	333	166	∞	142	284	∞	∞	∞	500	∞	∞	1
5	∞	642	475	309	142	∞	142	∞	∞	∞	∞	500	∞	1
6	∞	784	618	451	284	142	∞	∞	∞	∞	∞	∞	500	1
7	∞	500	∞	∞	∞	∞	∞	∞	166	333	499	642	784	1
8	∞	∞	500	∞	∞	∞	∞	166	∞	166	333	475	618	1
9	∞	∞	∞	500	∞	∞	∞	333	166	∞	166	309	451	1
10	∞	∞	∞	∞	1000	∞	∞	499	333	166	∞	142	284	∞
11	∞	∞	∞	∞	∞	1000	∞	642	475	309	142	∞	142	∞
12	∞	∞	∞	∞	∞	∞	1000	784	618	451	284	142	∞	∞
T	∞													

Dependency Matrix

	S	1	2	3	4	5	6	7	8	9	10	11	12	T
S	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0	0	0	0	0	0
2 3 4	1	0	0	0	0	0	0	0	0	0	0	0	0	0
4	1	0	0	1	0	0	0	0	0	0	1	0	0	0
5	1	0	0	0	0	0	0	0	0	0	0	1	0	0
6	1	0	0	0	0	0	0	0	0	0	0	0	1	0
7	1	1	0	0	0	0	0	0	0	0	0	0	0	0
8	1	0	1	0	0	0	0	0	0	0	0	0	0	0
9	1	0	0	1	0	0	0	0	0	0	0	0	0	0
10	1	0	0	0	0	0	0	0	0	1	0	0	0	0
11	1	0	0	0	0	0	0	0	0	0	0	0	0	0
12	1	0	0	0	0	0	0	0	0	0	0	0	0	0
T	1	1	1	1	1	1	1	1	1	1	1	1	1	0
S	1		2			3		4	1		5		6	т
S	1		2			3		2	1		5		6	т
s	1		2			3		2	1		5		6	Т
s	1 		2			3		2	1		5		6	т
s	1 		2 			3		2	1		5		6	т
S	1 ↓ ↓		2 			3 ↓		2	1		5		6	т
S	1 ↓		2			3 ↓		2	1		5		6	т
S	1 ↓		2			3		2	1		5		6	т
S	1 ↓		2			3		2	1		5		6	т
S	1 ↓		2			3		2	1		5		6	Т
S	1 ↓		2			3 ↓		2	1		5		6	т
S	1 ↓		2			3 ↓		2	1		5		6	т
S	1 ↓		2			3 ↓		2	1		5		6	Т
S	1 ↓		2			3 ↓			1		5		6	Т

Problem Statement

Goals

- Mow the field with pattern in **minimum time**
- Mow the pre-defined pattern in the field
- Observe dependency between lanes

Assumptions

- Lane mowing and lane-to-lane transition time is known and fixed
- Dependencies between the lanes are known
- Mower always starts from S and stops at T
- Each lane has to be mowed exactly once

Objective Function

min **Obj** = $\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} d_{ij} * e_{ij}$.

Constraints

$$\sum_{j=1}^{n-1} d_{Sj} = 1 \qquad (1)$$

$$\sum_{i=0}^{n-1} d_{iT} = 1 \qquad (2)$$

$$d_{j+N,j} - \left(\sum_{i=1}^{N} d_{j,i}\right) = 0 \quad \forall j = 1...N \qquad (3)$$

$$\left(\sum_{i=0}^{N} d_{i,j}\right) - d_{j,j+N} = 0 \quad \forall j = 1...N \qquad (4)$$

$$d_{j-N,j} - \left(\sum_{i=N+1}^{n-1} d_{j,i}\right) = 0 \quad \forall j = N+1...2N \qquad (5)$$

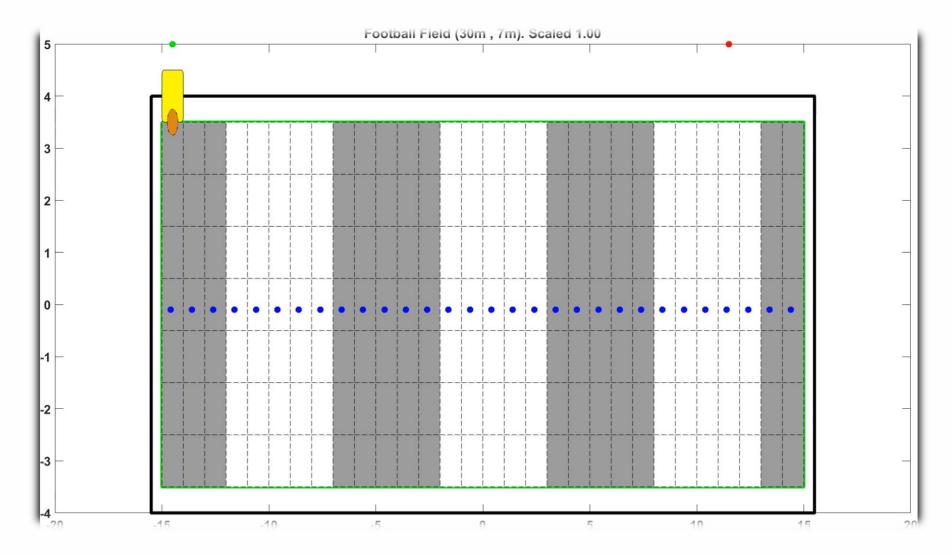
$$d_{S,j} + \left(\sum_{i=N+1}^{2N} d_{i,j}\right) - d_{j,j-N} = 0 \quad \forall j = N+1...2N \qquad (6)$$

Constraints

$$u_{i-1} - u_{j-1} + (n-1) \times d_{i,j} < n-2$$

$$u_{j-1} - u_{i-1} < 0$$
(8)

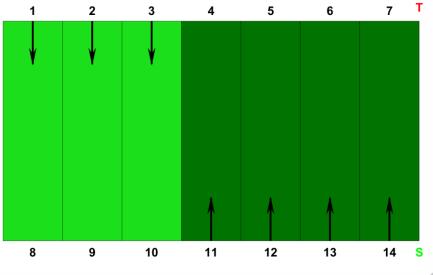
Results


Lanes	Status	Obj	Gap(%)	Time (sec)
16	Optimal	41474	0.0	00.13
40	Optimal	231185	0.0	0.9
68	Optimal	539995	0.0	1.0
96	Optimal	2113341	0.0	0.5
146	Optimal	5166207	0.0	499.7
192	Optimal	6761169	0.0	75.3

Configuration setup

- Java Gurobi 8.0 optimizer
- Intel(R) Core(TM) i7-5600U
- CPU 4-Core 2.60 GHz
- 8GB RAM
- Windows I0 (64-bit)

Results



Hochschule Luzern Information Technology

Model Limitation

Conclusion

- Optimizing the path of an autonomous football field mowing robot
- A pattern is simultaneously mowed together with respecting the lane dependencies
- Future Work
 - Optimizing path with more than one difference between top- and bottom-entering lanes

Thank you

