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Electrochemical kinetics of the direct methanol 
fuel cells

 Fuel cell – similar to galvanic cell but with 
refilling reagents

 Direct fuel cell – avoids formation of hydrogen

Example (NASA JPL): 
direct methanol fuel cell

Fuel             Gibbs energy potential   energy density  

                 [kJ / mol]    [V]       [MJ / kg]

methanol        702             1.213       21.9            

ethanol           1325       1.145       28.7       

1-propanol      1853       1.067       30.9       

2-propanol       1948      1.122       32.4      

n-butanol         2602    1.124       35.2     

dimethyl ether 1387       1.198     30.3

ethylene glycol 1181      1.224     19.0

formic acid      270        1.400     5.6

glycerol            1622         1.201 16.1

 

Ref: U.Krewer et al, Electrochemical Oxidation of Carbon-Containing Fuels and 
Their Dynamics in Low-Temperature Fuel Cells, ChemPhysChem 2011, 12, 2518-2544
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Modeling of electrochemical kinetics

 reactions form a hypergraph                               reaction
i
 = ∑

j
 aL

ij
 g

j
 – aR

ij
 g

j
 , 

where aL
ij
 , aR

ij
  – incidence matrices multiplied to stoichiometric coefficients, 

for the left and right hand side of the reaction, g
j
- reagents

 hypergraph is a generalization of graph where an edge can join any number 
of vertices, a

ij
 – incidence matrix for ending vertices (j) entering in an edge (i)

 reagents, variables, constants, parameters are listed

 hypergraph is translated to reaction rates         r
i
 = kL

i
 ∏ θ

j
        –  kR

i
 ∏ θ

j
 

 reaction rates are assembled to molar balance description

 ODEs are formed

 templates for fitting on stationary state and on dynamic system are prepared 

 L
2 
-norm distance between experiments and the model is minimized
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Mechanism of methanol oxidation:
reaction graph
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Mechanism of methanol oxidation:
reactions
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Mechanism of methanol oxidation:
model parameters

model constants

Faraday const

gas const

surf.area

capacity

activity const

charge transfer

coefficient

abs.temperature:       T, K

voltage:                      η, V current: Icell, A

surface 
coverages

volume 
concentrations 
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Mechanism of methanol oxidation:
reaction rates

reaction rates ri, mol/(m2s)

reaction constants ki, mol/(m2s)

probability that 
1CO meets 2OH

k0
i , ki– fitting parameters
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Mechanism of methanol oxidation:
molar balance

electrons come out of here
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Mechanism of methanol oxidation:
problem formulation

ODEs describing the dynamics

optimization problem: adjust 14 reaction consts k to fit 
experimental data, minimize  L

2
2=Σ (Icelli-Icelli,exp)

2  

stationary state: l.h.s. = 0, algebraic equations
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Fitting of model to experiment

 the cell is probed with saw-like 
voltage profile

 high amplitude

 non-linear effects

 numerical integration of ODEs

 teflon cell, deep vacuum to 
avoid external influence

 CO
2
 is removed by permanent 

argon blow

 rotating electrode suppresses 
diffusion effects
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experiments by TU Braunschweig
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Fitting of model to experiment

 dynamical part: Cyclic Voltammogram (CV)
described by ODE

 stationary part: Polarization Curve (PC)
described by algebraic equations,
will only be considered in this work

 blue points – experimental data
 red line – mathematical model 
 perfect fit!

η,V

η,V

Icell,A

Icell,A

PC

CV

PC
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Statistical and Principal Component Analysis

 fitting result (central values, p=log10k )
 the main question: how precise are these values?

 standard statistical method

 experimental error estimation ε2 = L2
2/Ndof, Ndof=Npt-Npar
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Statistical and Principal Component Analysis

 sensitivity, covariance, correlation matrices
 diagonal of cov: squared errors of parameters

 the deviation of the curve (~20%) measures 
non-linearity of the model inside given dp-box

 surprise! XTX is degenerate, cannot be inverted

 a deeper analysis is needed

η
i
,V

Xi1,A

sensitivity matrix 
(the first column)
red – central diff 
scheme, 
green/blue – 
forward/backward 
diff schemes
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Statistical and Principal Component Analysis

 trust region: box in parameter space, marking the applicability of 
linear model up to a given tolerance (e.g., 20%)

 error ellipsoid: one-sigma confidence region in parameter space, 
corresponding to the estimated Gaussian errors of experiment

 semi-axes of the ellipsoid that belong to trust region, correspond to 
parameter combinations, which can be measured precisely

 other directions are measured imprecisely

 Singular Value Decomposition (SVD):
X is Npt × Npar rectangular, u is Npt × Npar semi-orthogonal, 
λ is Npar × Npar diagonal, v is Npar × Npar orthogonal,
ak values represent the semi-axes of the error ellipsoid
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Statistical and Principal Component Analysis

 cont'd: columns of v-matrix represent 
directions of the axes of the ellipsoid in 
parameter space

 columns of u-matrix represent the profiles of 
principal components in the space of 
experiments

 these profiles show the variation of PC curve 
when the parameters are displaced along the 
axes of the error ellipsoid

η
i
,V

ui,1-4

u-profiles for the first 
four components, in 
red-green-blue-
cyan order for u i,1-4 
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Statistical and Principal Component Analysis

 the main result: 4 directions are measured precisely, 9 imprecisely, 
1 cannot be measured in principle (exact symmetry of the system)
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Statistical and Principal Component Analysis

 exact symmetry of the stationary system
 revealed as a result of PCA
 variation δp13=δp14 corresponds to infinite scatter 

 the result depends only on p13-p14, or on ratio of corresponding k's
 the source of degeneracy of XTX matrix

 Implementation in Mathematica
 Nsolve – to solve stationary algebraic system, real roots selected
 Manipulate – interactive change of parameters to find starting point
 FindMinimum / Nminimize – for local/global optimization
 NonlinearModelFit – fitting interface to the methods above
 Gradient – option to the fitting method to provide finite diff scheme
 SingularValueDecomposition – SVD/PCA
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Conclusion 

 the electrochemical alkaline methanol oxidation process is 
mathematically modeled

 an algorithm for reconstructing the reaction constants from the 
experimentally measured polarization curve is developed

 the approach combines statistical and principal component analysis
 formal criteria for reconstruction accuracy based on the estimate of 

the trust region for the linearized model are defined
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Conclusion 

 analysis shows that the described experiment allows to determine 
precisely not all 14 reaction constants, but only 4 their certain linear 
combinations 

 of the remaining orthogonal combinations, one corresponds to the 
symmetry of the stationary system and is fundamentally 
indeterminate in the described experiment

 the remaining 9 combinations have insufficient reconstruction 
accuracy 

 Further plans: other experiments should be involved in the analysis, 
including fully dynamic cyclic voltammetry and variations in the 
concentration of the main reagents.
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