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Motivation
 Modern complex and dynamic systems as Cyber-Physical 

Systems (CPSs):

 are composed of many interacting and interconnected 

components

 inherit all the complexities of modern large-scale 

distributed systems [1]

 deliver complex functionality [2]

 cooperate and collaborate with other CPSs.

 A common approach to deal with run-time changes and 

uncertainties is to make the CPSs self-adaptive.

 MAPE-K [6, 7, 8]

 The Knowledge component comprises models of the 

CPS(s) and the context where they are operating.
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Motivation cont. 
 Additionally, modern CPSs:

 operate in continually changing, uncertain, and unanticipated environments (operational

context) [3, 4, 5]

 additionally, CPSs often operate in:

 partially observable context 

 multiagent

 stochastic

 sequential

 dynamic

 continuous, and

 unknown context*. 

 abbreviated, PMSSDCU context.

* Unknown context does not refer to the context itself, but it refers to the knowledge that the CPSs have about the 
laws of physics of the context [6].



Chair of Software and Systems Engineering

TUM Department of Informatics
Technical University of Munich

5

Identified problems

The prior works in the self-adaptive systems domain provide approaches where 

1) the adaptation logic is predetermined and its structure does not change over time, e.g., [7], 
or 

2) the operational context in which the self-adaptive CPSs operate is predetermined and static, 
and does not change during run-time, e.g., [8].

Having an adaptation logic that is predefined at the design of the system and 
does not improve over time, cannot provide adequate and accurate 
adaptation, when the self-adaptive systems and the context in which they 
operating are dynamic and changing in an unpredictable manner during run-
time.
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Paper contribution

 We tackle this issue by proposing a methodology for building adaptation logic for self-adaptive 
CPSs that operate in a PMSSDCU context. The context changes in a way that cannot be predicted 
during the design of the system.

 We focus on building a self-adaptive system, for multi-agent CPSs, with shared adaptation logic, 
in which the knowledge in the adaptation is continuously updated at run-time. 

 In our work, the adaptation logic does not only adapts the behaviour of the systems (the 
managed elements), but it changes its own knowledge during run-time.
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Reference problem: Cleaning robots

Setting:
 Dirt appears perpetually in different places at different points in time in the room

 Unknown locations and frequency patterns
 One or more ground, mobile robots deployed in a room

 Discover new dirt tasks, and later attain the tasks
 Adaptive Monte Carlo Localization (AMCL) for navigation and localization

Mission goal: 
 Keep the room clean by removing the dirt 

Adaptation goals:
1. Minimizing the time needed for the room to be cleaned and be kept clean
2. Increasing its fault-tolerance by avoiding failures (e.g. collision with other robots) and 

deadlocks.
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Reference problem: In a perfect world…
 Single robot

 Perfect sensors

 Static obstacles

 Predefined number of 
dirt tasks

 Limitless sensor range –
complete overview of 
the room

 Sensors do not 
introduce any 
uncertainties 

 Robot never fails

 Perfect AMCL
However, this does not resemble reality! 
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Reference problem: The problems are…

1.

Sensors are not perfect: 
they have a partial 

observation range, and 
introduce different run-
time uncertainties, e.g., 

sensor imprecision, noise, 
ambiguity, inconsistency 
and inaccuracy, and even 

sensor failures [9] 

2.

Continuous appearance of 
new tasks with unknown 

patterns: The run-time 
decisions on how the new 
tasks are assigned to the 

robots, and what path the 
robots take to reach to 

those tasks can 
significantly influence the 
system adaptation goals.

3.

Navigation and localization do 
not work perfectly: when 

multiple agents need to localize 
themselves and navigate in a 

room, the other agents deployed 
in their relative proximity 

indirectly influence their actions. 
This can potentially lead to 

different AMCL localization and 
navigation issues, which can later 

result as sources of failures.

caused by changing 

context

caused by internal 
system changes

These changes are triggers for system self-adaptation.
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Methodology
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Methodology
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Tasks detection, knowledge representation and 
context models

 Task detection: a local phase, decentralized and distributed in every CPSs, i.e., robot.
 Every agent independently detects the newly appearing dirt tasks, with a confidence 
value of 10% upon detection. 
 The dirt tasks are published as goals, for all the robots, once the confidence value 
exceeds 90%. 

 The knowledge representation via context models in the adaptation logic: global phase, shared 
among all the CPSs, i.e., the robots. 

 It is the best possible representation of the actual context, i.e., the run-time state of the 
room in which the robots operate. 

 We model the context as a global, centralized grid map with a size equal to the size of 
the room. 

 Each cell in the grid is either free or occupied
 Every CPSs updates the same, shared knowledge, based on the tasks that the systems 

discover on a local level



Chair of Software and Systems Engineering

TUM Department of Informatics
Technical University of Munich

13

Updating context models based on probabilistic 
models

We update the context models during run-time, based on two probabilistic maps:

PROBABILITY GRID MAP
Probability of a dirt appearing in grid cell 𝑖, 𝑗 in the next time step: 

𝑃𝑖𝑗 𝑇 =
𝑁𝑖𝑗

𝑇
with Ni,j = number of dirt tasks found since T = 0

CUMULATIVE PROBABILITY GRID MAP
Probability of at least one dirt tasks being within the grid cell i,j:

𝐶𝑃𝑖𝑗 𝑇 = 1 − (1 − 𝑃𝑖𝑗(𝑇 − 1))(1 − 𝐶𝑃𝑖𝑗(𝑇 − 1))

Probability that there is not a single task



Chair of Software and Systems Engineering

TUM Department of Informatics
Technical University of Munich

14

Methodology
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Multi-robot goal allocation

GOAL

Finding an optimal allocation in which the overall sum of travel costs of all robots when visiting all 
detected tasks is minimized.

REQUIREMENTS

 Close-to-optimal solution

 Computationally feasible

 Dynamically adaptable during run-time

APPROACH

Multi-robot task allocation using minimum spanning forests (MSF), based on the greedy principle 
termed Prim Allocation [10], using Euclidean distance heuristic
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Methodology
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Local path planning

 Path planning: a local phase, decentralized and distributed in every CPSs, i.e., robot.
 Compromise with the multi-robot goal allocation from the previous phase
 Minimum distance (from the goal allocation) + maximum exploration (from the path 

planning)
 The motion of the agents is discrete, and with each timestamp they move up, down, left

and right

GOAL

Balance time minimization with exploration

 Use uniform cost graph search for path planning

Cost function:

Start

Left Right Up Down

Left Right Up Down

C

𝐶 = 𝑑 𝑙𝑒𝑓𝑡 − α ⋅ 𝐸(𝑥, 𝑦, 𝑙𝑒𝑓𝑡)

distance when 
moving left

tuning
parameter 

exploration gain 
(by moving left from position x,y)
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Implementation

 ROS-based communication

 Simulated in Gazebo [11, 12]

 TurtleBot3 Burgers1

 closely resemble the real world

 Simulate many robots, and different room maps 
can be used
 The evaluation is done with a setup of two 

robots in a single room

 Deployment to real robots without any 
modification 

 Implementation is open-source2

1 https://www.turtlebot.com/
2 https://github.com/tum-i22/ssacps_simulation, https://github.com/tum-i22/ssacps_packages

TurtleBot3 BurgerMap of the room, the 
deployed robots and their 

observation range

ROS implementation architecture

https://www.turtlebot.com/
https://github.com/tum-i22/ssacps_simulation
https://github.com/tum-i22/ssacps_packages
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Evaluation

 Experimental setup: 

 8 experiments in total: 1 long term (40 minutes) 
and seven short-term (10 minutes)

 during all the experiments we vary:
 the exploration parameter α
 the time-interval of dirt task spawn ∆𝑡
 the use of prior learned knowledge gained 

in time 𝑇*

 for a better replication of the experiments, we 
fixed the frequency ∆𝑡 and used the random seed 
for the appearance of the tasks. 

* the prior learned knowledge comes in the form of probability task distribution that is learned for 1000 time-steps (in seconds) 
before the actual measurements are collected.

Experiments parameters specifics
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Results: Spawned vs. detected tasks

 Investigate whether the robots have a good coverage in the partially observable context with 
regards to the detection of tasks: 

α = 0, T = 0 α = 0.75, T = 1000

 No exploration and no prior knowledge  With exploration and prior knowledge

RESULTS: With exploration and prior knowledge shows a much better approximation of the spawned tasks 
by the detected tasks over time.
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Results: Goals 
assigned over time

Results: Succeeded 
goals (cumulative)

RESULTS: We can observe that the number of
assigned goals increases when we have exploration
and prior knowledge (depicted in orange), in
comparison, when there is no exploration and no
prior knowledge given (depicted in blue).

α = 0, T = 0 α = 0.75, T = 1000vs. α = 0, T = 0 α = 0.75, T = 1000vs.α = 0.75, T = 0vs.

RESULTS: The exploration benefits are only noticeable
when the exploration is combined with the previously
learned knowledge about the context. Otherwise,
when the system explores without prior knowledge,
it performs almost half worse than when the system
did not explore and did not learn.
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Conclusion

 We investigated how self-adaptive systems that establish their adaptation on incorporating
human-like activities like collaboration and learning can preserve or even improve their
performance—despite the continuous, run-time changes in the PMSSDCU context that could
not be specified during the design time.

 As part of this paper, we proposed an approach for building adaptation logic, which improves
over time and tackles different challenges of self-adaptive CPSs.

 The collaboration is enabled through run-time cooperative aggregations of the contextual 
observations and run-time collaborative tasks assignment. 

 The learning is achieved by storing the past contextual encounters, which later are reused in a 
predictive manner, to help the systems make better, smarter decisions. 

 To evaluate our approach, we built a self-adaptive system testbed from the robotics domain.
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