Extending ASP Based Reasoning to Expressive Constructive Description Logics

Loris Bozzato

DKM - Data and Knowledge Management Research Unit, FBK, Fondazione Bruno Kessler - Trento, Italy

Email: <surname>@fbk.eu

12th International Conference on Information, Process, and Knowledge Management (eKNOW 2020)
November 21-25, 2020 – Valencia, Spain
Contact

Loris Bozzato bozzato[at]fbk.eu
Researcher @ DKM - Data and Knowledge Management Research Unit
FBK - Fondazione Bruno Kessler, Trento, Italy
https://dkm.fbk.eu/people/profile/bozzato

Research interests (KRR)

- Context representation and reasoning
- Defeasibility in description logics
- Constructive semantics for description logics
Constructive description logics
Constructive interpretations of description logics

- **Goal**: develop reasoning tools for Constructive DLs
- **Approach**: use connections to Answer Set Programming (ASP)

→ we want to highlight this line of research and the challenges in its extension to more expressive DLs
Constructive Description Logic $\mathcal{EL}c$

Constructive DL $\mathcal{EL}c$ [Bozzato, 2018]

- Information term (IT) semantics for \mathcal{EL}
- Restriction of \mathcal{BCDL} [Ferrari et al., 2010]
Constructive Description Logic \mathcal{EL}^c

Constructive DL \mathcal{EL}^c [Bozzato, 2018]
- Information term (IT) semantics for \mathcal{EL}
- Restriction of \mathcal{BCDL} [Ferrari et al., 2010]

Information terms $\text{IT}_{\mathcal{N}}(K)$ [Miglioli et al., 1989]
Structured objects that **constructively justify the truth** of a formula K

Realizability $\mathcal{M} \triangleright \langle \alpha \rangle K$
Truth of K in a model \mathcal{M} **justified** w.r.t. α
Constructive Description Logic $\mathcal{EL}c$

Constructive DL $\mathcal{EL}c$ [Bozzato, 2018]
- Information term (IT) semantics for \mathcal{EL}
- Restriction of \mathcal{BCDL} [Ferrari et al., 2010]

Information terms $\text{IT}_\mathcal{N}(K)$ [Miglioli et al., 1989]
Structured objects that constructively justify the truth of a formula K

Realizability $\mathcal{M} \triangleright \langle \alpha \rangle K$
Truth of K in a model \mathcal{M} justified w.r.t. α

E.g.: Truth of $\exists R.C(a)$ in \mathcal{M} justified by IT (b, α) s.t.
- $\mathcal{M} \models R(a, b)$ and
- α justifies truth of $C(b)$
Task

Compute information terms of input KB Γ in \mathcal{EL}

Idea

Use relations across IT and Answer Sets semantics

[Fiorentini and Ornaghi, 2007] on propositional nested expressions

→ We extend these results to \mathcal{EL}_c formulas

Result (sketch) [Bozzato, 2018]

The (minimal) information terms for a set Γ of \mathcal{EL} formulas can be obtained by computing the answer sets of input formulas in Γ
ASP translations

ASP based generation of IT [Bozzato, 2018]

- **Model generating rewriting** (P_1)
 Generates interpretations for input \mathcal{EL} formulas (fixed roles assertions)

- **Model generating rewriting** (P_{1}^f)
 Generates interpretations for input \mathcal{EL} formulas (with existential fillers)

- **IT generating rewriting** (P_2)
 Retrieves IT as complex terms, using definition of ITs

Asp-it prototype

ASP based IT generator for OWL EL ontologies

https://github.com/dkmfbk/asp-it
Current challenges:

- Semantic extension to expressive DL operators
- ASP translation extension to expressive DLs
- Further reasoning tasks: manipulation of ITs
- Implementation and application to real use cases

Extension to \mathcal{EL}_\perp [Bozzato and Fiorentini, 2020]

- Constructive DL \mathcal{ELc}_\perp: IT semantics for \mathcal{EL}_\perp
- Formal relation between ASP and IT semantics in \mathcal{ELc}_\perp
ASP based generation of information terms for constructive \mathcal{EL}.

Reasoning on information term semantics with ASP for constructive \mathcal{EL}_\bot.

BTC\mathcal{DL}: basic constructive description logic.

Answer set semantics vs. information term semantics.

A constructivism based on classical truth.