A Combined Approach to Dynamic web page Classification: merging Structure and Content

Maria Niarou, Sofia Stamou

Department of Archives, Library and Museum Studies
Ionian University
Corfu, Greece

[14niar@ionio.gr, stamou@ionio.gr]
Presenter:

Maria (niar@ionio.com) is a PhD student at the Ionian University in Corfu. She is a graduate of the Department of Archives, Library Science and Museology (Faculty of Information Science & Informatics). During her Master's studies (Information Service in Digital Environment), she concluded that what interests her most is the data processing via semantic analysis. The research she conducted during the writing of her master's thesis resulted in her first publication: Niarou M., Stamou S. 2012; “Exploring Lexical Ontologies for Hierarchically Organizing the Greek Wikipedia Articles”; International Journal of Digital Information Management, Vol. 10, No. 3, pp. 157-167. The present presentation is the core of the academic research that Maria carries out, supervised by Sofia Stamou (Assistant Professor at the Department of Archives, Library Science and Museology).

Research Interests:

- Natural Language Processing
- Information Retrieval
- Semantics
- Knowledge Extraction from Digital Libraries and Web
- Knowledge Organization Systems

Languages: Greek, English, Italian, French
Presentation Layout

• INTRODUCTION
 • Motivation
 • Related Work
 • Contribution

• METHODOLOGY
 • Outline
 • Algorithm 1: Multi-Dimensional Classification (Procedure 1)
 • Algorithm 1: Multi-Dimensional Classification (Procedure 2)
 • Algorithm 2: Re-Classification based on Pages’ Change Detection
 • Algorithm 3: Optimized Re-Classification based on Change’s Frequency Detection

• EXPERIMENTAL STUDY
 • Framework
 • Results

• CONCLUSION and FUTURE WORK
 • Conclusion
 • Future Work
A combined Approach to Dynamic web page Classification: merging Structure and Content
M. Niarou, S. Stamou
Motivation: Web pages’ nature (4 basic features)

- **Voluminous**
 Need for fast & effective automated classification always present & demanding.

- **Linked**
 Useful apart from confusing?
 Information retrieval point of view.

- **Heterogeneous**
 Less is more...
 Simple and universal classification elements.

- **Dynamic**
 Unpredictable changes!
 = Extra challenging characteristic of web page classification
Related Work (2 main groups)

Text Processing
- semantic networks
- ontologies
- hierarchies

Object clusters
relationships between the object categories => thematical organization

Structure Processing
- link properties
- user clicks
- sentiment analysis

Successful approaches // Place for further work
machine learning approaches => training phase => time request

Successful approaches // Place for further work
noisy and/or irrelevant features
Contribution

Our methodology...

... is holistic

... builds upon existing works BUT no lack of innovation (examines both structure & content)

... accounts for the pages’ dynamic nature (integrates solutions that have previously studied separately)

... detecting changes’ grade & frequency
Methodology
Outline: three autonomous and supplementary algorithms

Algorithm 1: Multi-Dimensional Page Classification

- **Idea:** textual & structural classification = complementary
- **Goal:** to classify the pages structurally and thematically

Algorithm 2: Re-Classification based on Changes’ Grade Detection

- **Idea:** detect pages’ dynamic nature via a re-Classification component, in order to maintain data indexes updated
- **Goal:** to decide which of the modified pages need to be re-Classified

Algorithm 3: Optimized Re-Classification based on Changes’ Frequency Detection

- **Idea:** optimize the re-Classification process
- **Goal:** save time and resources
Methodology (2/5)

Algorithm 1: Multi-Dimensional Page Classification

Procedure 1: Structure-based classification

Baseline: we reverse the argument that web searches can be classified as either Navigational, Informational or Transactional, and we claim that pages can be classified accordingly.

• Phase 1: Page Type Recognition

 if any transactional term(s) as link(s) = transactional page

 Else

 compute word tokens to links ratio (R)

 if R ≥ t, P = P(informational)

 Else

 if R ≤ t, P = P(navigational)

 Output

 Pages’ Type identification

 • P(transactional)

 • P(navigational)

 • P(informational)

• Phase 2: Layered Page Classification given their type

 Transactional Pages

 • map P’s(transactional) t/terms to table correlation

 • estimate the mapping(s) occurrence

 • tag P(transactional) with the category of max occurrence (e.g. e-commerce)

 Else

 Search for payment term(s) as link(s)

 if any, P(transactional) = “not-free”

 Else

 P(transactional) = “free”

 Navigational Pages

 starting after “http(s):/”,

 count the number of “/” in url

 if “/” ≥ h, P(navigational) = “WebPage”

 Else

 P(navigational) = “HomePage”

 Informational Pages

 (no extra typical characteristics => no extra structural classification)

 HomePages

 URLs mapping against (D(top))

 number of “/” = depth value

 and tagged with their suffix meaning

 WebPages

 Structurally classified pages
Methodology (3/5)

Algorithm 1: Multi-Dimensional Page Classification

Procedure 2: Content-based classification

Baseline: having experimented with several textual features, we ended up with anchor title and title as the most easily extracted and informative of the theme of a page.

- **Phase 1:** Textual elements Extraction

 for each \(P \),
 extract anchor title in Url
 And
 title in text body
 Output
 Pages tagged by their textual elements

- **Phase 2:** Theme Detection

 for every page \(P \),
 -look for common terms between \(P \)'s anchorTitle and \(P \)'s textTitle
 if found, use common terms as the theme(-s) to tag \(P \)
 Else
 -check for overlapping terms between \(P \)'s first n-appearing keywords and (\(P \)'s anchor title and \(P \)'s text title)
 if found, use overlapping terms as the theme(-s) to tag \(P \)
 Else
 -map \(P \)'s first n-appearing keywords to WordNet and look for common senses between \(P \)'s keywords and (\(P \)'s anchor title and \(P \)'s text title)
 if found, use terms of common senses as the theme(-s) to tag \(P \)
 Output
 Thematically classified pages

Structurally classified pages +
Thematically classified pages =
MultiDimensionally classified pages
Methodology (4/5)

Algorithm 2: Re-Classification based on Change Detection

Challenge: how to deal with pages' dynamic nature // how to ensure that the classification outcome is up-to-date

Idea: re-Classification component to our algorithm

Goal: to detect, measure and identify the possible changes

- **Procedure 1:** Re-Classification Decision based on Textual Changes
 - Pages' textual elements in time T ($E(t) \in P$)
 - Compute similarity (similarity metric)
 - Page thematically unchanged
 - Compare elements and count ($|E(t) \in P| - |E(t) \in P'| \geq k$)
 - Pages that need re-Classification
 - Pages unchanged over time

- **Procedure 2:** Re-Classification Decision based on Structural Changes
 - Pages' structural elements in time T ($E(s) \in P$)
 - Compute similarity (similarity metric)
 - Page structurally unchanged
 - Compare elements and count ($|E(s) \in P| - |E(s) \in P'| \geq k$)
 - Pages that need re-Classification
 - Pages unchanged over time

Compare (structural and textual) elements of any given page with their counterparts previously identified!
Methodology (5/5)

Algorithm 3: Optimized Re-Classification based on Change’s Frequency Detection

Baseline:
capture pages’ change frequency =>

| => determine the re-classification policy => optimize the runs of our Re-Classification algorithm => |

| => save time and resources |

Input elements
“Clue” classification elements

Secondary index
- activated upon the Re-Classification algorithm initializes
- records every time a change is detected (between two chronologically different snapshots of the page)

Timer
- changes are recorded by the timer
- timestamp of the change detection

MinFreqChange ≤ Ts ≤ MaxFreqChange

Send page to Algorithm 2

Pages that need periodical Re-Classification
Experimental Study
Experimental Study (1/2)

Framework (4 points)

Goal
- Evaluate the effectiveness of our classification algorithm.
- Validate the potential weaknesses of our approach.

How?
- Validating the classification performance of our method.

Data Set
- Bookmarked pages of 10 volunteers, experienced web users.
- Informed about our study objectives, asked to indicate pages’ type & theme.
 - Brief instructions with respect to the definition of every type
 - Several examples
- Theme self-determined by our volunteers
 - Verbalized based on their understanding

Quantity Formulas
- Recall: $\frac{TP}{TP+FN}$
- Precision: $\frac{TP}{TP+FP}$
Experimental Study (2/2)

Results

Recall: algorithm's capacity in identifying a category for every page. **Precision:** algorithm's capacity in identifying the correct category for every page.

Structure-based Classification (recall)

- Informational: 53%
- Navigational: 15.00%
- Transactional: 17.33%
- No Class: 14.67%

Content-based Classification (recall)

- Yes: 83.60%
- No: 13.40%

Evaluation of Content-based Classification (precision)

- TruePositive (Correct): 12.60%
- FalsePositive (Wrong): 87.40%

Changing pages that need Re-Classification

- Pages changed after 1 month:
 - Informational: 68%
 - Navigational: 58.70%
 - Transactional: 46%

- Pages changed after 3 months:
 - Informational: 6.60%
 - Navigational: 4.60%

The algorithm successfully detects a structural & a thematic category for the majority of the examined pages!
Conclusion & Future Work
Conclusion

What we presented?

- Combines structural properties and textual elements.
- Accounts for the pages’ dynamic nature.

What’s new here?

Effectively captures both the type and the general theme of the examined web pages.

Does it work? Works well?

Novel web page classification approach.
Future work

- **Improvements**: Enable multiple type classifications of a given web page (when necessary).
- **Experimenting**: Alternative/additional lexical resources.
- **Goal**: Prospective flexibility of our approach, would extend methodology's significance.
Any Questions...

A Combined Approach to Dynamic web page Classification: merging Structure and Content

Maria Niarou, Sofia Stamou

Department of Archives, Library and Museum Studies
Ionian University
Corfu, Greece

[14niar@ionio.gr, stamou@ionio.gr]

Thank you!