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• Background on Cloud-Native & Cloud-Native Networks

• Open Source Landscape 

• Performance Challenges and Acceleration Techniques

• Testing and Observability

• Design Principles 

• Takeaways

Outline
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• Combination of Containers, CI/CD, Microservices, Declarative APIs, DevOps

• Key benefits

• Ship fast, reduce risk

• Scalability, Agility, Resiliency 

• Cloud technologies evolution timeline
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• Deliver networking in a cloud env; Network itself is implemented with cloud-

native principles

• Kubernetes as container orchestrator; Networking via container networking 

interface (CNI) plugins; Linux kernel as the building blocks

• Cloud-Native Networks basic functions

• General Pod connectivity

• IP address management (IPAM)

• Service handling and load balancing

• Network policy enforcement

• Monitoring and troubleshooting

Cloud-Native Networks
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• Basic Kubernetes networking definitions
• Pod: a group of containers on a same host, IP per Pod, change dynamically

• Service: a group of endpoints (pods), stable virtual IP

• Flat network inside cluster, all Pods can communicate without NAT

• Plugin-based network solution, create networks for pods when Kubernetes initiate Pods

• Network policy describe the allowed communication among Pods

• 4 types communication: container-to-container, Pod-to-Pod, Pod-to-Service, External-to-Service

Cloud-Native Networks in Kubernetes
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Bridge Plugin Example

1. Create bridge network

2. Create a veth pair

3. Attach one veth to Pod namespace

4. Attach the other veth to bridge

5. Assign IP address

6. Bring interface up

7. Enable NAT

$ bridge add <CID> <Namespace>
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• A view of 23 cards, market cap of $561.87B and funding of $393.8M*

Open Source Landscape – CNCF Cloud-Native Networks

*https://landscape.cncf.io/
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• Container Network Interface Standards

• Generic Solutions

• Multiple interfaces in a container

• Data plane acceleration

• Hardware acceleration

• Multi-cloud networking

Problems Covered
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• Linux networking stack issues

• Complex, ~12 millions lines of code

• A copy is needed from user space to kernel space

• Packet flow is long, especially with NetFilter (port mapping, NAT, etc)

Performance Challenges
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• Software-based, provide fast-path for packets, utilize unique CPU features

• DPDK/VPP, user space forwarding, bypass kernel

• eBPF, customize kernel packet processing flow, maximize efficiency

Software Acceleration Technologies

SR-IOV enabled NIC
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• “Superpower”, reprogram the behavior of Linux kernel without changing source code

• Component: eBPF program and Maps, Hooks, Helper functions

• Toolchains: bcc, bpftrace, go/c/c++ lib

• Applications, run eBPF program on events

• Networking, Security, Tracing & Profiling, Observability & Monitoring

• Industry adoption 

• Cilium (eBPF-based CNI), Cloudflare (eBPF-based DDos) 

• Facebook, L3-L4 load balancing, network security, profiling, etc.

• Google, Cilium & eBPF as the new networking data plane for GKE

eBPF (extended Berkeley Packet Filter)*

*https://ebpf.io/what-is-ebpf
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• Utilize different processing architecture (SmartNIC, FPGA, GPU) to 

parse and dispatch network packets instead of CPU

• Network throughput greatly increased, but not the CPU computation power

• Offload network functions to hardware

• TCP,  TLS/IPsec crypto, OVS*

• Adoption is driven by hyperscalers

• Azure, FPGA-based SmartNIC, programmed using generic flow tables

• GCP, GPU attached VM, throughput is up to 100 Gbps

• AWS, Nitro card

Hardware Acceleration Technologies

*https://antrea.io/presentations/
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• CI/CD pipeline, from source to production ASAP

• CI/CD Tools

• Trigger/schedule tests/tasks; Manage source/artifact/results

• CNCF has 30+ projects 

Testing Infrastructure

Development
➢ Unit Tests

➢ Static analysis

Build
➢ Integration Tests

➢ Regression Tests

➢ Component Tests

➢ Vulnerability scan

Stage
➢ System Tests

➢ Performance Tests

➢ Load Tests

➢ Compliance Tests

Production
➢ A/B Test

➢ Canary Tests

Continuous Integration Continuous Delivery
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• Functional Tests

• Connectivity Test (readiness, liveness)

• Policy Test (firewall rules)

• Performance Tests

• Function itself (latency/throughput)

• Function at scale (large no. of requests/nodes, large tables/database)  

Test Cases
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Performance Comparison VNF vs CNF

• Network Architecture Evolution: PNF -> VNF -> CNF

• CNF Testbed Project*

• Compare VNFs on OpenStack with CNFs on Kubernetes

• Workflow: Hardware provision -> Infra provision -> VNF, CNF deploy -> Testing

• Network functions: Packet Filter, NIC Gateway

• Use cases: service chaining, SR-IOV device plugin, multiple network paths

• Preliminary results: CNF leads more metrics*

− Deploy time, idle state RAM/CPU, throughput 

− Latency, runtime RAM/CPU
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*https://github.com/cncf/cnf-testbed
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• DevOps, development and operation together

• Observability: Metrics, Logging, Tracing

• CNCF standard I/F: OpenMetrics, Fluentd, OpenTelemetry

• CNF design with built-in observability

• Data source 

− Probes: kprobes, uprobes, dtrace probes

− Tracepoints: compile tracepoints into CNF/program

• Data extraction

− Files(/sys/kernel/debug/tracing), system calls (perf_event_open)

− eBPF program, attach to probes and tracepoints, send data back by BPF Maps

• Use cases: Interface changes, table/session updates

Beyond Testing: Built-in Observability

Example: user program probe, gobpf/bcc by IOvisor*

*https://github.com/iovisor/gobpf/blob/master/examples/bcc/strlen_count/strlen_count.go
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• Containerization, network functions packed into containers

• Stateless, states stored separated in a CRD or DB, not local

• Microservices, complex network functions made by CNFs chaining

• Dynamic orchestration via Kubernetes

• Configuration via ConfigMap or other declarative APIs

• Built-in observability, compatible with CNCF standard interfaces

• Software and hardware co-design, hardware support via device plugin

Cloud-Native Networks Design Principles
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• Extensibility is the foundation of Kubernetes’ success; CNI plugin and Device plugin 

promote various solutions and opportunities

• Cloud-native technologies and tools are fast growing; network domain could 

leverage their existing success to accelerate its own evolution

• Performance is always a challenge, eBPF brings a new way to improve Linux kernel; 

hardware acceleration could be more significant; co-design probably yields the best.

Takeaways
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