The 12th International Conference on Advances in System Testing and Validation Lifecycle

An Overview of Cloud-Native Networks Design and Testing

Zhaobo Zhang

Futurewei Technologies

i
{
zzhangl@futurewei.com . o ‘
Oct. 2020 g ‘
) i*.
SONAEA
aw’ ' ’ s FUTUREWEI

/ i Technologies

°
°
®
.
.

® -,
L]

e

Speaker Biography

Zhaobo Zhang
Principal Engineer
Futurewei Technologies, CA, U.S.

Zhaobo Zhang is a principle engineer in Network Technologies Lab at Futurewei
Technologies, Inc. She has been working on machine learning applications for anomaly
detection, system testing, fault diagnosis for 10 years. Her recent focus is on cloud-
native networking, and machine learning based resource orchestration. She received
her B.S. in Electronics Engineering from Tsinghua University, China, and Ph.D. in
Electrical and Computer Engineering from Duke University, U.S.

Page 2

Outline

 Background on Cloud-Native & Cloud-Native Networks
* Open Source Landscape

 Performance Challenges and Acceleration Techniques
 Testing and Observability

e Design Principles

 Takeaways

Page 3

What’s Cloud Native?

* Combination of Containers, ClI/CD, Microservices, Declarative APls, DevOps
7

* Key benefits

“Seﬁtwa#eh: iId N

 Ship fast, reduce risk

is Eating the World.

« Scalability, Agility, Resiliency
software open source cloud cloud-native

(Internet picture, unknown source)

* Cloud technologies evolution timeline

Cloud Cloud-native Cloud-native Cloud-native
Computing Application Orchestrator, Cloud-native Network Function,
Computing Foundation Cloud-native Telco
2006 2010 2015 2018
Amazon EC2 Netflix Cloud Kubernetes CNFs Definition
Migration CNCF ONAP containerization

Page 4

Cloud-Native Networks

* Deliver networking in a cloud env; Network itself is implemented with cloud-

native principles

* Kubernetes as container orchestrator; Networking via container networking

interface (CNI) plugins; Linux kernel as the building blocks

* (Cloud-Native Networks basic functions

o5 " TN N M N N N N N N N N N N S N N N N N ~

4
. /" Runtime Cluster *
« General Pod connectivity '

« |P address management (IPAM)
« Service handling and load balancing

« Network policy enforcement

o
o
o
o
B ———

« Monitoring and troubleshooting e e —————————— e

Page 5

Cloud-Native Networks in Kubernetes

)) i i
Pod1 Pod2 Pod1 Pod2 Bridge Plugin Example
Z Z .
§ eth0 etho | | % eth0 etho | Create bridge ne-twork
Create a veth pair
- /(' DK " : Y Attach one veth to Pod namespace
h h1 h h1 :
o e{ : \ J//vet > o [veto /)\7/‘ > Attach the other veth to bridge
v 3 " 3 Assign IP address
gate tunnel gate unnel . .
> Bring interface up
ef A0 Enable NAT

$ bridge add <CID> <Namespace>

* Basic Kubernetes networking definitions

Pod: a group of containers on a same host, IP per Pod, change dynamically

Service: a group of endpoints (pods), stable virtual IP

Flat network inside cluster, all Pods can communicate without NAT

Plugin-based network solution, create networks for pods when Kubernetes initiate Pods
Network policy describe the allowed communication among Pods

4 types communication: container-to-container, Pod-to-Pod, Pod-to-Service, External-to-Service

Page 6

Open Source Landscape — CNCF Cloud-Native Networks

* Aview of 23 cards, market cap of $561.87B and funding of $393.8M*

CUMULUS & :«Qi

Runtime - Cloud Native Network (23)

O [
. ANTREA A aVvIiaTrix O:. CNI-Genie)
cilium CNI Contiv

Antrea 764 Aviatrix Funding: $65.8M Cilium CNI-Genie - Container Network Interface 2073 Contiv

MCap: $59.518 Aviatrix Systems Isovalent Cloud Native Computing (cnn Cisco MCap: §162.788
Foundation (CNCF) ve Computin

Foundation (CNCF)

__ﬁ_ 4 £ flannel €% cuardicore O mﬁ‘i""“""” kuse €)RouTER
- 10 “

Guardicore Centra

LF Networking RedHat ~ jueao-s10593g 2~ owardicoe Kl = Alauda Funding: $15M Cloud Native Labs

...... Ware
{ \ :-:-:-:-:':-:-: @vs “' h Eﬁi:fc vim
/ o) . c-;
N kg ice Mesh nua?enetworks Open vSwitch tungstenfabnc N X
etwork Service Mes From N

Foundation (CNCF)

*https://landscape.cncf.io/

Cumulus Networks

&

LIGATO
weave
net

DANM

DANM

MCap: $21.25B

%}3 MULTUS

Multus

Page 7

Problems Covered

e Container Network Interface Standards

* Generic Solutions | flannel

 Multiple interfaces in a container

CNI

* Data plane acceleration :—_ﬁio

* Hardware acceleration (@ .

* Multi-cloud networking | #

tungstenfabric

CNI-Genie gj' MULTUS
« oSe
o0
cilium
Open vSwitch

Network Service Mesh

Page 8

Performance Challenges

* Linux networking stack issues
« Complex, ~12 millions lines of code
« A copy is needed from user space to kernel space

« Packet flow is long, especially with NetFilter (port mapping, NAT, etc)

Kernel Networking Stack NetFilter packet flow (5 chains, 5 tables)
User Space Application Application
| Socket Interface o e
Output
TCP || UDP raw —><conntrack>
: v
' I t
Kernel Space _| | IP || Routing || NetFilter | — | | | [filter - nat +{ mangle
Ethernet

Queuing Discipline

Pre-routing -’ Forward | Post-routing
Network Device Driver - -

Hardware Network Device Network Device

Page 9

Software Acceleration Technologies

Software-based, provide fast-path for packets, utilize unique CPU features

- DPDK/VPP, user space forwarding, bypass kernel

- eBPF, customize kernel packet processing flow, maximize efficiency

Standard Kernel

DPDK Kernel Bypass

eBPF shorten the packet flow

Kernel Networking

!

|

Network Interface
Card (NIC)

]

[Pod 1] [Podz)
J
Kernel Networking

VF

PF VF
SR-I0OV enabled NIC

Application Application
Socket Socket
TCP g8s Nj TCP
B cilium P
Ethernet Ethernet
Queuing Di& /Queuing Disc

N~
Fo\opback

Page 10

eBPF (extended Berkeley Packet Filter)*&@eBPF

 “Superpower”, reprogram the behavior of Linux kernel without changing source code

e Component: eBPF program and Maps, Hooks, Helper functions eBPF program
!

* Toolchains: bcc, bpftrace, go/c/c++ lib _bee Process
- Applicati BPF t Verifir @ Lo
pplica |or15, run e. pro.gram on .e.ven S . o }IT- k]
Networking, Security, Tracing & Profiling, Observability & Monitoring [Compiler TCP/IP

ﬁ(arch bytecode)

* Industry adoption

Cilium (eBPF-based CNI), Cloudflare (eBPF-based DDos)
Facebook, L3-L4 load balancing, network security, profiling, etc.
Google, Cilium & eBPF as the new networking data plane for GKE

*https://ebpf.io/what-is-ebpf Page 11

Hardware Acceleration Technologies

« Utilize different processing architecture (SmartNIC, FPGA, GPU) to

parse and dispatch network packets instead of CPU

Network throughput greatly increased, but not the CPU computation power

e Offload network functions to hardware
TCP, TLS/IPsec crypto, OVS* |@ ~niren

 Adoption is driven by hyperscalers
Azure, FPGA-based SmartNIC, programmed using generic flow tables
GCP, GPU attached VM, throughput is up to 100 Gbps
AWS, Nitro card

*https://antrea.io/presentations/ Page 12

Testing Infrastructure

* CI/CD pipeline, from source to production ASAP

Continuous Integration

P

»

Development
Unit Tests

\

h /Build

Static analysis

)

e ClI/CD Tools

\

Integration Tests

P

Continuous Delivery

-

Regression Tests
Component Tests

\~ Vulnerability scan /

A 4

Stage

System Tests
Performance Tests
Load Tests

\

Production
A/B Test

\.~ Compliance Tests /

A 4

Canary Tests

\

 Trigger/schedule tests/tasks; Manage source/artifact/results

« CNCF has 30+ projects | £

ilyuﬂ
)

Jenkins

AVA

Page 13

Test Cases

e Functional Tests

« Connectivity Test (readiness, liveness)

 Policy Test (firewall rules)

e Performance Tests

 Function itself (latency/throughput)
« Function at scale (large no. of requests/nodes, large tables/database)

Page 14

Performance Comparison VNF vs CNF

e Network Architecture Evolution: PNF -> VNF -> CNF

Virtual Machine

VNF

Guest OS

Container

CNF

elul 4ND

< Virtualization [Containerization
-|Z-1 (Hypervisor) (Container Engine)
 CNF Testbed Project* 7| hHostos U Hostos
. ® Hardware Hardware
« Compare VNFs on OpenStack with CNFs on Kubernetes
- Workflow: Hardware provision -> Infra provision -> VNF, CNF deploy -> Testing
« Network functions: Packet Filter, NIC Gateway
« Use cases: service chaining, SR-IOV device plugin, multiple network paths
 Preliminary results: CNF leads more metrics* /~ openstack/Kubernetes Cluster) —
- Deploy time, idle state RAM/CPU, throughpUt Master node| | Worker nodel| | Worker node2 Generator
- Latency, runtime RAM/ VNF/CNF VNF/CNF NFVbench
\ controller (vSwitch) (vSwitch)
\N/A S
Hardware Switch
Page 15

*https://github.com/cncf/cnf-testbed

Beyond Testing: Built-in Observability

° DeVOpS, development and Operatlon together Example: user program probe, gobpf/bcc by I0Ovisor*

int count(pt _regs *ctx) {
if (!PT_REGS_PARM1(ctx))

 Observability: Metrics, Logging, Tracing [Prnees.

strlenkey_t key;

« CNCF standard I/F: OpenMetrics, Fluentd, OpenTelemetry O e ————

val = counts.lookup_or_init(&key, &zero);
(*val)++;

 CNF design with built-in observability return o

- Data source —
pid := flag.Int("pid”, -1, "attach to pid, default is all processes")
- Probes: kprobes, uprobes, dtrace probes m i= bpf.Newodule(source, [1string(})
strlenUprobe, err := m.LoadUprobe("count")

. err = m.AttachUprobe("c", "strlen", strlenUprobe, *pid)
- Tracepoints: compile tracepoints into CNF/program table := bpf.NewTable(n. TableId("counts"), m)
fmt.Println("Tracing strlen()... hit Ctrl-C to end.")
. fmt.Printf("%10s %s\n", "COUNT", "STRING")
® Data eXtraCtlon for it := table.Iter(); it.Next(); {

fmt.Printf("%10d \"%s\"\n", it.key(), it.Leaf())
}

- Files(/sys/kernel/debug/tracing), system calls (perf event open) | |

- eBPF program, attach to probes and tracepoints, send data back by BPF Maps
« Use cases: Interface changes, table/session updates

*https://github.com/iovisor/gobpf/blob/master/examples/bcc/strlen_count/strlen_count.go Page 16

Cloud-Native Networks Design Principles

 Containerization, network functions packed into containers

e Stateless, states stored separated in a CRD or DB, not local
 Microservices, complex network functions made by CNFs chaining
* Dynamic orchestration via Kubernetes

* Configuration via ConfigMap or other declarative APIs

* Built-in observability, compatible with CNCF standard interfaces

 Software and hardware co-design, hardware support via device plugin

Page 17

Takeaways

* Extensibility is the foundation of Kubernetes’ success; CNI plugin and Device plugin

promote various solutions and opportunities

* Cloud-native technologies and tools are fast growing; network domain could

leverage their existing success to accelerate its own evolution

* Performance is always a challenge, eBPF brings a new way to improve Linux kernel;

hardware acceleration could be more significant; co-design probably yields the best.

Page 18

THANK YOU

