
An Overview of Cloud-Native Networks Design and Testing

Zhaobo Zhang

Futurewei Technologies

zzhang1@futurewei.com

Oct. 2020

The 12th International Conference on Advances in System Testing and Validation Lifecycle

Page 2

Speaker Biography

Zhaobo Zhang

Principal Engineer

Futurewei Technologies, CA, U.S.

Zhaobo Zhang is a principle engineer in Network Technologies Lab at Futurewei

Technologies, Inc. She has been working on machine learning applications for anomaly

detection, system testing, fault diagnosis for 10 years. Her recent focus is on cloud-

native networking, and machine learning based resource orchestration. She received

her B.S. in Electronics Engineering from Tsinghua University, China, and Ph.D. in

Electrical and Computer Engineering from Duke University, U.S.

Page 3

• Background on Cloud-Native & Cloud-Native Networks

• Open Source Landscape

• Performance Challenges and Acceleration Techniques

• Testing and Observability

• Design Principles

• Takeaways

Outline

Page 4

• Combination of Containers, CI/CD, Microservices, Declarative APIs, DevOps

• Key benefits

• Ship fast, reduce risk

• Scalability, Agility, Resiliency

• Cloud technologies evolution timeline

What’s Cloud Native?

2006

Amazon EC2

2010

Netflix Cloud

Migration

2015

Kubernetes

CNCF

2018

CNFs Definition

ONAP containerization

Cloud-native

Orchestrator, Cloud-native

Computing Foundation

Cloud

Computing

Cloud-native

Application

Cloud-native

Network Function,

Cloud-native Telco

(Internet picture, unknown source)

Page 5

• Deliver networking in a cloud env; Network itself is implemented with cloud-

native principles

• Kubernetes as container orchestrator; Networking via container networking

interface (CNI) plugins; Linux kernel as the building blocks

• Cloud-Native Networks basic functions

• General Pod connectivity

• IP address management (IPAM)

• Service handling and load balancing

• Network policy enforcement

• Monitoring and troubleshooting

Cloud-Native Networks

Pod

Network

Runtime
CNI

Plugin

Cluster

Page 6

• Basic Kubernetes networking definitions
• Pod: a group of containers on a same host, IP per Pod, change dynamically

• Service: a group of endpoints (pods), stable virtual IP

• Flat network inside cluster, all Pods can communicate without NAT

• Plugin-based network solution, create networks for pods when Kubernetes initiate Pods

• Network policy describe the allowed communication among Pods

• 4 types communication: container-to-container, Pod-to-Pod, Pod-to-Service, External-to-Service

Cloud-Native Networks in Kubernetes

Pod1

eth0

eth0

veth0

Pod2

eth0

veth1

tunnel

N
o
d

e
 1

gateway

C
N

F

A
g

e
n

t

Pod1

eth0

eth0

veth0

Pod2

eth0

veth1

tunnel

N
o
d

e
 2

gateway

C
N

F

A
g

e
n

t

Bridge Plugin Example

1. Create bridge network

2. Create a veth pair

3. Attach one veth to Pod namespace

4. Attach the other veth to bridge

5. Assign IP address

6. Bring interface up

7. Enable NAT

$ bridge add <CID> <Namespace>

Page 7

• A view of 23 cards, market cap of $561.87B and funding of $393.8M*

Open Source Landscape – CNCF Cloud-Native Networks

*https://landscape.cncf.io/

Page 8

• Container Network Interface Standards

• Generic Solutions

• Multiple interfaces in a container

• Data plane acceleration

• Hardware acceleration

• Multi-cloud networking

Problems Covered

Page 9

• Linux networking stack issues

• Complex, ~12 millions lines of code

• A copy is needed from user space to kernel space

• Packet flow is long, especially with NetFilter (port mapping, NAT, etc)

Performance Challenges

Application

Socket Interface

TCP

IPKernel Space

User Space

Ethernet

Network Device Driver

Hardware Network Device

NetFilter

Queuing Discipline

Routing

UDP

Kernel Networking Stack NetFilter packet flow (5 chains, 5 tables)

Network Device

Pre-routing Post-routingForward

Input

Output

Routing

raw

manglenatfilter

conntrack

Application

Page 10

• Software-based, provide fast-path for packets, utilize unique CPU features

• DPDK/VPP, user space forwarding, bypass kernel

• eBPF, customize kernel packet processing flow, maximize efficiency

Software Acceleration Technologies

SR-IOV enabled NIC

Kernel Networking

PF VF

Pod 1

DPDK

PF driver

VF

Pod 2

DPDK

DPDK Kernel Bypass

Network Interface

Card (NIC)

Kernel Networking

Pod

Standard Kernel eBPF shorten the packet flow

Socket

TCP

IP

Ethernet

loopback

Queuing Disc

TCP

IP

Ethernet

Queuing Disc

Socket

Application Application

Page 11

• “Superpower”, reprogram the behavior of Linux kernel without changing source code

• Component: eBPF program and Maps, Hooks, Helper functions

• Toolchains: bcc, bpftrace, go/c/c++ lib

• Applications, run eBPF program on events

• Networking, Security, Tracing & Profiling, Observability & Monitoring

• Industry adoption

• Cilium (eBPF-based CNI), Cloudflare (eBPF-based DDos)

• Facebook, L3-L4 load balancing, network security, profiling, etc.

• Google, Cilium & eBPF as the new networking data plane for GKE

eBPF (extended Berkeley Packet Filter)*

*https://ebpf.io/what-is-ebpf

eBPF program

Verifier

JIT

Compiler

Processbcc

Sockets

TCP/IP

eBPF

Maps

connect

TCP retran

(arch bytecode)

Page 12

• Utilize different processing architecture (SmartNIC, FPGA, GPU) to

parse and dispatch network packets instead of CPU

• Network throughput greatly increased, but not the CPU computation power

• Offload network functions to hardware

• TCP, TLS/IPsec crypto, OVS*

• Adoption is driven by hyperscalers

• Azure, FPGA-based SmartNIC, programmed using generic flow tables

• GCP, GPU attached VM, throughput is up to 100 Gbps

• AWS, Nitro card

Hardware Acceleration Technologies

*https://antrea.io/presentations/

Page 13

• CI/CD pipeline, from source to production ASAP

• CI/CD Tools

• Trigger/schedule tests/tasks; Manage source/artifact/results

• CNCF has 30+ projects

Testing Infrastructure

Development
➢ Unit Tests

➢ Static analysis

Build
➢ Integration Tests

➢ Regression Tests

➢ Component Tests

➢ Vulnerability scan

Stage
➢ System Tests

➢ Performance Tests

➢ Load Tests

➢ Compliance Tests

Production
➢ A/B Test

➢ Canary Tests

Continuous Integration Continuous Delivery

Page 14

• Functional Tests

• Connectivity Test (readiness, liveness)

• Policy Test (firewall rules)

• Performance Tests

• Function itself (latency/throughput)

• Function at scale (large no. of requests/nodes, large tables/database)

Test Cases

Page 15

Performance Comparison VNF vs CNF

• Network Architecture Evolution: PNF -> VNF -> CNF

• CNF Testbed Project*

• Compare VNFs on OpenStack with CNFs on Kubernetes

• Workflow: Hardware provision -> Infra provision -> VNF, CNF deploy -> Testing

• Network functions: Packet Filter, NIC Gateway

• Use cases: service chaining, SR-IOV device plugin, multiple network paths

• Preliminary results: CNF leads more metrics*

− Deploy time, idle state RAM/CPU, throughput

− Latency, runtime RAM/CPU

Virtualization

(Hypervisor)

Host OS

Hardware

Virtual Machine

VNF

Guest OS

V
N

F
 In

fra

Containerization

(Container Engine)

Host OS

Hardware

Container

CNF

C
N

F
 In

fra

Worker node1

VNF/CNF

(vSwitch)

Traffic

Generator
Master node

controller
NFVbench

Hardware Switch

Openstack/Kubernetes Cluster

Worker node2

VNF/CNF

(vSwitch)

*https://github.com/cncf/cnf-testbed

Page 16

• DevOps, development and operation together

• Observability: Metrics, Logging, Tracing

• CNCF standard I/F: OpenMetrics, Fluentd, OpenTelemetry

• CNF design with built-in observability

• Data source

− Probes: kprobes, uprobes, dtrace probes

− Tracepoints: compile tracepoints into CNF/program

• Data extraction

− Files(/sys/kernel/debug/tracing), system calls (perf_event_open)

− eBPF program, attach to probes and tracepoints, send data back by BPF Maps

• Use cases: Interface changes, table/session updates

Beyond Testing: Built-in Observability

Example: user program probe, gobpf/bcc by IOvisor*

*https://github.com/iovisor/gobpf/blob/master/examples/bcc/strlen_count/strlen_count.go

Page 17

• Containerization, network functions packed into containers

• Stateless, states stored separated in a CRD or DB, not local

• Microservices, complex network functions made by CNFs chaining

• Dynamic orchestration via Kubernetes

• Configuration via ConfigMap or other declarative APIs

• Built-in observability, compatible with CNCF standard interfaces

• Software and hardware co-design, hardware support via device plugin

Cloud-Native Networks Design Principles

Page 18

• Extensibility is the foundation of Kubernetes’ success; CNI plugin and Device plugin

promote various solutions and opportunities

• Cloud-native technologies and tools are fast growing; network domain could

leverage their existing success to accelerate its own evolution

• Performance is always a challenge, eBPF brings a new way to improve Linux kernel;

hardware acceleration could be more significant; co-design probably yields the best.

Takeaways

THANK YOU

