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Zhaobo Zhang is a principle engineer in Network Technologies Lab at Futurewei
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her B.S. in Electronics Engineering from Tsinghua University, China, and Ph.D. in
Electrical and Computer Engineering from Duke University, U.S.
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Outline

 Background on Cloud-Native & Cloud-Native Networks
* Open Source Landscape

 Performance Challenges and Acceleration Techniques
 Testing and Observability

e Design Principles

 Takeaways
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What’s Cloud Native?

* Combination of Containers, ClI/CD, Microservices, Declarative APls, DevOps
7

* Key benefits

“Seﬁtwa#eh: iId N

 Ship fast, reduce risk

is Eating the World.

« Scalability, Agility, Resiliency
software open source cloud cloud-native

(Internet picture, unknown source)

* Cloud technologies evolution timeline

Cloud Cloud-native Cloud-native Cloud-native
Computing Application Orchestrator, Cloud-native Network Function,
Computing Foundation Cloud-native Telco
2006 2010 2015 2018
Amazon EC2 Netflix Cloud Kubernetes CNFs Definition
Migration CNCF ONAP containerization
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Cloud-Native Networks

* Deliver networking in a cloud env; Network itself is implemented with cloud-

native principles

* Kubernetes as container orchestrator; Networking via container networking

interface (CNI) plugins; Linux kernel as the building blocks

* (Cloud-Native Networks basic functions

o5 " TN N M N N N N N N N N N N S N N N N N ~

4
. /" Runtime Cluster *
« General Pod connectivity '

« |P address management (IPAM)
« Service handling and load balancing

« Network policy enforcement

o
o
o
o
B ———

« Monitoring and troubleshooting e e —————————— e
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Cloud-Native Networks in Kubernetes

) ) i i
Pod1 Pod2 Pod1 Pod2 Bridge Plugin Example
Z Z .
§ eth0 etho | | % eth0 etho | Create bridge ne-twork
Create a veth pair
- /(' DK " : Y Attach one veth to Pod namespace
h h1 h h1 :
o e{ : \ J//vet > o [veto /)\7/‘ > Attach the other veth to bridge
v 3 " 3 Assign IP address
gate tunnel gate unnel . .
> Bring interface up
ef A0 Enable NAT

$ bridge add <CID> <Namespace>

* Basic Kubernetes networking definitions

Pod: a group of containers on a same host, IP per Pod, change dynamically

Service: a group of endpoints (pods), stable virtual IP

Flat network inside cluster, all Pods can communicate without NAT

Plugin-based network solution, create networks for pods when Kubernetes initiate Pods
Network policy describe the allowed communication among Pods

4 types communication: container-to-container, Pod-to-Pod, Pod-to-Service, External-to-Service
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Open Source Landscape — CNCF Cloud-Native Networks

* Aview of 23 cards, market cap of $561.87B and funding of $393.8M*

CUMULUS & :«Qi

Runtime - Cloud Native Network (23)
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cilium CNI Contiv
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Foundation (CNCF)

*https://landscape.cncf.io/

Cumulus Networks

&
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weave
net
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Problems Covered

e Container Network Interface Standards

* Generic Solutions | flannel

 Multiple interfaces in a container

CNI

* Data plane acceleration :—_ﬁio

* Hardware acceleration (@ .

* Multi-cloud networking | #

tungstenfabric

CNI-Genie gj' MULTUS
« oSe
o0
cilium
Open vSwitch

Network Service Mesh
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Performance Challenges

* Linux networking stack issues
«  Complex, ~12 millions lines of code
« A copy is needed from user space to kernel space

« Packet flow is long, especially with NetFilter (port mapping, NAT, etc)

Kernel Networking Stack NetFilter packet flow (5 chains, 5 tables)
User Space Application Application
| Socket Interface o e
Output
TCP || UDP raw —><conntrack>
: v
' I t
Kernel Space _| | IP || Routing || NetFilter | — | | | [ filter - nat +{ mangle
Ethernet

Queuing Discipline

Pre-routing -’ Forward | Post-routing
Network Device Driver - -

Hardware Network Device Network Device
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Software Acceleration Technologies

Software-based, provide fast-path for packets, utilize unique CPU features

- DPDK/VPP, user space forwarding, bypass kernel

- eBPF, customize kernel packet processing flow, maximize efficiency

Standard Kernel

DPDK Kernel Bypass

eBPF shorten the packet flow

Kernel Networking

!

|

Network Interface
Card (NIC)

]

[Pod 1 ] [Podz )
J
Kernel Networking

VF

PF VF
SR-I0OV enabled NIC

Application Application
Socket Socket
TCP g8s Nj TCP
B cilium P
Ethernet Ethernet
Queuing Di& /Queuing Disc

N~
Fo\opback
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eBPF (extended Berkeley Packet Filter)*&@eBPF

 “Superpower”, reprogram the behavior of Linux kernel without changing source code

e Component: eBPF program and Maps, Hooks, Helper functions eBPF program
!

* Toolchains: bcc, bpftrace, go/c/c++ lib _bee Process
- Applicati BPF t Verifir @ Lo
pplica |or15, run e. pro.gram on .e.ven S . o }IT- k ]
Networking, Security, Tracing & Profiling, Observability & Monitoring [Compiler TCP/IP

ﬁ(arch bytecode)

* Industry adoption

Cilium (eBPF-based CNI), Cloudflare (eBPF-based DDos)
Facebook, L3-L4 load balancing, network security, profiling, etc.
Google, Cilium & eBPF as the new networking data plane for GKE

*https://ebpf.io/what-is-ebpf Page 11



Hardware Acceleration Technologies

« Utilize different processing architecture (SmartNIC, FPGA, GPU) to

parse and dispatch network packets instead of CPU

Network throughput greatly increased, but not the CPU computation power

e Offload network functions to hardware
TCP, TLS/IPsec crypto, OVS* |@ ~niren

 Adoption is driven by hyperscalers
Azure, FPGA-based SmartNIC, programmed using generic flow tables
GCP, GPU attached VM, throughput is up to 100 Gbps
AWS, Nitro card

*https://antrea.io/presentations/ Page 12



Testing Infrastructure

* CI/CD pipeline, from source to production ASAP

Continuous Integration

P

»

Development
Unit Tests

\

h /Build

Static analysis

)

e ClI/CD Tools

\

Integration Tests

P

Continuous Delivery

-

Regression Tests
Component Tests

\~ Vulnerability scan /

A 4

Stage

System Tests
Performance Tests
Load Tests

\

Production
A/B Test

\.~ Compliance Tests /

A 4

Canary Tests

\

 Trigger/schedule tests/tasks; Manage source/artifact/results

« CNCF has 30+ projects | £

ilyuﬂ
)

Jenkins

AVA
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Test Cases

e Functional Tests

« Connectivity Test (readiness, liveness)

 Policy Test (firewall rules)

e Performance Tests

 Function itself (latency/throughput)
« Function at scale (large no. of requests/nodes, large tables/database)
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Performance Comparison VNF vs CNF

e Network Architecture Evolution: PNF -> VNF -> CNF

Virtual Machine

VNF

Guest OS

Container

CNF

elul 4ND

< Virtualization [ Containerization
-|Z-1 (Hypervisor) (Container Engine)
 CNF Testbed Project* 7| hHostos U Hostos
. ® Hardware Hardware
« Compare VNFs on OpenStack with CNFs on Kubernetes
- Workflow: Hardware provision -> Infra provision -> VNF, CNF deploy -> Testing
« Network functions: Packet Filter, NIC Gateway
« Use cases: service chaining, SR-IOV device plugin, multiple network paths
 Preliminary results: CNF leads more metrics* /~ openstack/Kubernetes Cluster ) —
- Deploy time, idle state RAM/CPU, throughpUt Master node| | Worker nodel| | Worker node2 Generator
- Latency, runtime RAM/ VNF/CNF VNF/CNF NFVbench
\ controller (vSwitch) (vSwitch)
\N/A S
Hardware Switch
Page 15

*https://github.com/cncf/cnf-testbed



Beyond Testing: Built-in Observability

° DeVOpS, development and Operatlon together Example: user program probe, gobpf/bcc by I0Ovisor*

int count( pt _regs *ctx) {
if (!PT_REGS_PARM1(ctx))

 Observability: Metrics, Logging, Tracing [Prnees.

strlenkey_t key;

« CNCF standard I/F: OpenMetrics, Fluentd, OpenTelemetry O e ————

val = counts.lookup_or_init(&key, &zero);
(*val)++;

 CNF design with built-in observability return o

- Data source —
pid := flag.Int("pid”, -1, "attach to pid, default is all processes")
- Probes: kprobes, uprobes, dtrace probes m i= bpf.Newodule(source, [1string(})
strlenUprobe, err := m.LoadUprobe("count")

. . . . . err = m.AttachUprobe("c", "strlen", strlenUprobe, *pid)
- Tracepoints: compile tracepoints into CNF/program table := bpf.NewTable(n. TableId("counts"), m)
fmt.Println("Tracing strlen()... hit Ctrl-C to end.")
. fmt.Printf("%10s %s\n", "COUNT", "STRING")
® Data eXtraCtlon for it := table.Iter(); it.Next(); {

fmt.Printf("%10d \"%s\"\n", it.key(), it.Leaf())
}

- Files(/sys/kernel/debug/tracing), system calls (perf event open) | |

- eBPF program, attach to probes and tracepoints, send data back by BPF Maps
« Use cases: Interface changes, table/session updates

*https://github.com/iovisor/gobpf/blob/master/examples/bcc/strlen_count/strlen_count.go Page 16



Cloud-Native Networks Design Principles

 Containerization, network functions packed into containers

e Stateless, states stored separated in a CRD or DB, not local
 Microservices, complex network functions made by CNFs chaining
* Dynamic orchestration via Kubernetes

* Configuration via ConfigMap or other declarative APIs

* Built-in observability, compatible with CNCF standard interfaces

 Software and hardware co-design, hardware support via device plugin
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Takeaways

* Extensibility is the foundation of Kubernetes’ success; CNI plugin and Device plugin

promote various solutions and opportunities

* Cloud-native technologies and tools are fast growing; network domain could

leverage their existing success to accelerate its own evolution

* Performance is always a challenge, eBPF brings a new way to improve Linux kernel;

hardware acceleration could be more significant; co-design probably yields the best.
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