The Fourteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies UBICOMM 2020

Hokkaido University,	National Institute of	Hokkaido University,	
Japan	Informatics, Japan	Japan	
嶋田 祥太	橋爪宏達	杉本 雅則	
(Shota SHIMADA)	(Hiromichi HASHIZUME)	(Masanori SUGIMOTO)	
shimadas@eis.hokudai.	has@nii.ac.jp	sugi@ist.hokudai.ac.jp	
ac.jp			

Overview

Indoor positioning system using LEDs and a smartphone

- 1. LED modulated with unique frequency
- 2. A camera capturing floor reflections

six-degrees-of-freedom mobile attitude estimation

Fig. System overview

 $(x_{L_k}, y_{L_k}, z_{L_k})$: Known position of LED k P_{F_i} : Any position on the recorded image (x, y, z): Unknown position of the mobile

Background

Increased demand

for indoor localization technique

Smartphone

- Medical care
- Advertising

- Manufacturing
- Sales and so on

ubiquitous

infrastructure

How to localize the smartphone ?

Fig. Ubiquitous infrastructures for indoor positioning system

Visible Light Positioning (VLP)

Fig. Smart light system proposed by Philips lighting

https://www.usa.lighting.philips.com/systems/lightingsystems/indoor-positioning

PhotoDiode (PD) ? Camera ?

PD on the mobile: <u>Not sensitive</u> to receive the signal We use a CAMERA

Existing problem and our purpose

Conventional: Directly detection

- Lack of camera function
 - Too dark to take other objects
- Lack of the signal
 - High ceiling or narrow LED space

Proposal: Detection **Reflections**

- Entire lighting on the floor
 - LED can be detected everywhere on the floor

Fig. Coverage of positioning using reflections

Proposal principle

[™] Frequency means blinking rate

Three step for positioning

1. Distance $d_{i,k}$ between the light source and the recorded floor

2. Position on the floor P_{F_i} recorded by the camera

3. Position and attitude of the camera

1: Distance d_k between the light source and the recorded floor **Model about distance** d_k **VS amplitude spectrum** β_k

 \rightarrow approximated by a hyperbolic secant distribution

2. Position on the floor $P_F = (x_F, y_F)$ recorded by the camera

Trilateration using more and over three d_k

$$\begin{cases} \sqrt{(x_F - x_0)^2 + (y_F - y_0)^2} = d_0 \\ \sqrt{(x_F - x_1)^2 + (y_F - y_1)^2} = d_1 \\ \sqrt{(x_F - x_2)^2 + (y_F - y_2)^2} = d_2 \end{cases}$$

If over three LEDs are used, it should be solved as an optimization problem

Fig. P_F captured be the camera and distance d_k from each LED

3. Position and attitude of the camera

six-degrees-of-freedom mobile attitude estimation from Angle of Arrival using P_F

[21] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with the OpenCV library. "O'Reilly Media, Inc.", 2008.

Experimental environment

Camera

- iPhone 7: 50fps
- Sutter speed: 1/500 second
- ISO value: 500
- 32 \times 32 Pixel at each P_F
- Fixed with a tripod
- Any other object was removed
- Recording 100 images at each measurement

LED

- Four LEDs are mounted
- 36V (about 3000lm)
- Modulated at 101, 106, 113, and 120Hz sinusoidal

Fig. Experimental environments

Two estimation experiments

Camera

Horizontal fixed with a tripod

Recording

- 80 measurement points in 4.0 m square area
- Measurement at each point

using estimation

Camera

Each angle was changed by 10 degrees with tripod

Recording

One measurement points (x, y, z) = (1.0, 0.5, 1.15)

Estimated Position of P_F

Less than 0.42 m at the 90th percentile error

Potential for applications requiring high-accuracy

Large error on the outside

Implied Limitation

Estimated six-degrees-of-freedom mobile attitude

Means of 90th percentile absolute rotation error were 5.69°, 5.78°, and 3.96° for the roll, pitch, and yaw

• Potential for applications using direction like a indoor navigation

Comparison, limitation, and future work

TABLE I. COMPARISON WITH EXISTING VLP METHODS USING LED.

	Epsilon [7]	Luxapose [4]	PIXEL [8]	Rajagopal [5]	Nakazawa [9]	Our proposal
Accuracy of position	~0.4m	~0.1m	~0.3m	N/A	~0.1m	~0.27m
Accuracy of rotation	N/A	$\sim 3^{\circ}$	N/A	N/A	N/A	$\sim 5.78^\circ$
Method	Model	AoA	Polarized	PRR	Model	RSS
Coverage	5.0 m×8.0 m	1.0 m×1.0 m	2.4 m×1.8 m	3.9 m×8.0 m	1.0 m×2.4 m	4.0 m×4.0 m
Facing	Ceiling	Ceiling	Ceiling	Floor	Ceiling and floor	Floor
Distortion	No	Yes	No	Yes	Yes	No
Extra	PD	No	Filter	No	No	No
Number of LEDs	5	5	8	4	2	4
Resolution	N/A	7712×5360	120×160	1280×720	3280×2460	$32 \times 32 \times 9$
					1472×1104	

Smallest resolution, larger coverage, and less limitation of the receiver

Some factors cause the error

Tilt of the smartphone

Requirement for improvement about robustness

Obstacles (shadow, object, human, and so on)

[7] L. Li, et al.. Epsilon: A visible light based positioning system. NSDI 2014

[4] Ye-Sheng Kuo, et al.. Luxapose: Indoor positioning with mobile phones and visible light. MobiCom 2014

[8] Yang, Zhice, et al.. Wearables can afford: Light-weight indoor positioning with visible light. MobiSys 2018

[5] N. Rajagopal, et al.. Visual light landmarks for mobile devices, IPSN 2014

[9] Y. Nakazawa, et al.. Precise in- door localization method using dual-facing cameras on a smart device via visible light communication, IEICE Trans. Fundamentals, 2017.