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Overview
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Fig. System overview

1. LED modulated with unique frequency
2. A camera capturing floor reflections

(𝑥!", 𝑦!! , 𝑧!!): Known position 
of LED 𝑘

𝑃#" : Any position on the 
recorded image

(𝑥, 𝑦, 𝑧) : Unknown position of 
the mobile

Indoor positioning system
using LEDs and a smartphone

six-degrees-of-freedom mobile attitude estimation 



Background
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Fig. Ubiquitous infrastructures for indoor positioning system

Increased demand
for indoor localization technique

Smartphone

ubiquitous 
infrastructure

・Medical care ・Manufacturing 
・Advertising ・Sales      and so on

How to localize the smartphone ?



Visible Light Positioning (VLP)
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https://www.usa.lighting.philips.com/systems/lighting-
systems/indoor-positioning

Fig. Smart light system proposed by Philips lighting

Efficiency
Accuracy Cost

PhotoDiode (PD) ?
Camera ?

PD on the mobile: 
Not sensitive

to receive the signal

We use a CAMERA

https://www.usa.lighting.philips.com/systems/lighting-systems/indoor-positioning


Existing problem and our purpose
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Conventional: Directly detection
Ø Lack of camera function
• Too dark to take other objects

Ø Lack of the signal
• High ceiling or narrow LED space Fig.  Detection LEDs directly [4]

[4] Ye-Sheng Kuo, et al.. Luxapose: Indoor positioning with mobile phones and visible light. MobiCom 2014

Proposal: Detection  Reflections
Ø Entire lighting on the floor
• LED can be detected 

everywhere on the floor

LED

Coverage

Fig.  Coverage of positioning
using reflections



Proposal principle
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Fig.  Attenuation of the reflections by 
the distance

Distance from LED
can be estimated

by the intensity on the floor
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Each LED are modulated with
an orthogonal unique frequency

sine wave to identify

Fig.  Each LED and allocation of frequencies

LED 0

(", $, %)

LED 1

LED 2
LED 0:

Frequency 0

LED 1: 
Frequency 1

※Frequency means blinking rate

LED 2: 
Frequency 2



Three step for positioning

1. Distance 𝑑!,# between the light source 
and the recorded floor
2. Position on the floor 𝑃$! recorded by 
the camera
3. Position and attitude of the camera 
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Fig. System overview



1: Distance 𝑑! between the light 
source and the recorded floor 
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Fig. The camera capturing 𝑁 images Fig. Amplitude spectrum 𝛽! VS distance 𝑑!

Model about distance 𝑑) VS amplitude spectrum 𝛽)

𝜎 : radiation characteristic of the LED 
𝐶 : the transmission efficiency 
𝛽!: amplitude spectrum 

→approximated by a hyperbolic secant distribution

𝑁 images
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Fourier 
transform



2. Position on the floor 𝑃" =
(𝑥" , 𝑦") recorded by the camera
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Fig. 𝑃" captured be the camera and distance 𝑑! from each LED

!" !#

!$!% 𝑃"

Trilateration using more and over three 𝑑)

If over three LEDs are used, 
it should be solved as an 

optimization problem



3. Position and attitude of the camera 
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Fig. Camera position and Angle of Arrival of 𝑃#

six-degrees-of-freedom mobile attitude estimation
from Angle of Arrival using 𝑃*

𝑃&%(𝑥&% , 𝑦&', 0)

𝑃&&(𝑥&& , 𝑦&(, 0)

𝑃&'(𝑥&' , 𝑦&), 0)

Captured image

Position and attitude
𝑥, 𝑦, 𝑧 ,
𝜃# , 𝜃$, 𝜃%

(", $)

&!

'!

(! )

*+

,": Yaw
,#: Roll
,$: Pitch

Fig. Definition of camera attitude

Min‖ ‖𝐀 R 𝑡 𝑃 − 𝑠𝑝/ (

Minimize the traditional
camera matrix [21]

[21] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with the OpenCV library. ” O’Reilly Media, Inc.”, 2008.



Experimental environment
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Fig. Experimental environments

LED
• Four LEDs are mounted
• 36V (about 3000lm)
• Modulated at 101, 106, 113, and 120Hz 

sinusoidal

Camera
• iPhone 7: 50fps
• Sutter speed: 1/500 second
• ISO value: 500
• 32×32 Pixel at each 𝑃#
• Fixed with a tripod
• Any other object  was removed
• Recording 100 images at each 

measurement

Function 
generator

Power
supply

Camera:
iPhone 7

Height:
1.15 m

LED:
BXRE-50C4001-B-74 

Height:
2.6 m

LED:
BXRE-50C4001-B-74 

LED:
BXRE-50C4001-B-74 

LED:
BXRE-50C4001-B-74 



Two estimation experiments
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Camera
• Horizontal fixed with a tripod

Position of 𝑃* captured
by the camera

six-degrees-of-freedom 
mobile attitude

Recording
• 80 measurement points in 

4.0 m square area
• Measurement at each point

Fig. 𝑃" captured by the camera

Only one point 
with one direclion

Camera
• Each angle was changed by 10 

degrees with tripod
Recording
• One measurement points 

(x, y, z) = (1.0, 0.5, 1.15)

Fig. six-degrees-of-freedom mobile 
attitude

Fig. Nine 𝑃"
using estimation



Estimated Position of 𝑃!
Less than 0.42 m at the 90th percentile error 
• Potential for applications requiring high-accuracy

Large error on the outside
• Implied Limitation
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Fig. LED arrangement, 𝑃" measurement points, and estimated 
positions

Fig. CDF of absolute errors of estimated 𝑃"
positions



Estimated six-degrees-of-freedom 
mobile attitude
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Fig. 90th percentile absolute rotation error at 
each posture of the smartphone.

-�� -�� -�� � �� �� ��
�

�

��

��

���� �� ��� �	
������ (°)

� �� �� �� ��
�
�
�
�
�
��
��

��� �� ��� 	
������� (°)

� � �� �� �� �� ��
�
�
�
�
�
�
�
�

����� �� ��� 	
������� (°)

� � �� �� �� �� ��
�
�
�
�
�
�
�
�

����� �� ��� 	
������� (°)

	
�������
����
�����
���

���������	

��� ���� ���

-�� -�� -�� � �� �� ��
�

�

�

��

���� �� ��� �	
������ (°)

��
��
��
��
�	
�
�
�
��
��
�(
°)

Fig. Estimated absolute errors about six degrees-of-
freedom using nine 𝑃"! s at (𝜃# , 𝜃$ , 𝜃%) = (0,0, 𝜋/4).

Means of 90th percentile absolute rotation error were 5.69◦, 
5.78◦, and 3.96◦ for the roll, pitch, and yaw

• Potential for applications using direction like a indoor navigation



Comparison, limitation, and future work

Some factors cause the error
・Tilt of the smartphone

・Obstacles (shadow, object, human, and so on)
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[5] N. Rajagopal, et al.. Visual light landmarks for mobile devices, IPSN 2014

[4] Ye-Sheng Kuo, et al.. Luxapose: Indoor positioning with mobile phones and visible light. MobiCom 2014
[8] Yang, Zhice, et al.. Wearables can afford: Light-weight indoor positioning with visible light. MobiSys 2018

[9] Y. Nakazawa, et al.. Precise in- door localization method using dual-facing cameras on a smart device via 
visible light communication, IEICE Trans. Fundamentals, 2017. 

[7] L. Li, et al.. Epsilon: A visible light based positioning system. NSDI 2014

Requirement for 
improvement about 

robustness

Smallest resolution, larger coverage, and
less limitation of the receiver


