
Towards a Tool-based Approach for
Microservice Antipatterns Identification

Rafik Tighilt1, Manel Abdellatif2, Naouel Moha1, Yann-Gaël Guéhéneuc3

tighilt.rafik@courrier.uqam.ca, manel.abdellatif@polymtl.ca, moha.naouel@uqam.ca, yann-gael.gueheneuc@concordia.ca

1 Université du Québec à Montréal
2 Polytechnique Montréal
3 Concordia University

12th International Conference on Advanced Service Computing SERVICE COMPUTATION 2020

1

mailto:tighilt.rafik@gmail.com
mailto:manel.abdellatif@polymtl.ca
mailto:moha.naouel@uqam.ca
mailto:yann-gael.gueheneuc@concordia.ca

About the presenter

2

RAFIK TIGHILT

I’m a MSc student in computer science at Université du Québec à

Montréal, currently working on microservice-based system antipatterns.

I previously got a MSc in IT systems management. I worked on the industry

for 3 years including founding my own startup before starting the current

MSc program in computer science at UQAM.

My fields of interest include software engineering, web development and

competitive programming.

Outline
● About microservices

● Approach

● Microservice antipatterns

● Meta-model definition

● Meta-model components

● Detection rules

● Discussion

● Threats to validity

● Conclusion

12th International Conference on Advanced Service Computing SERVICE COMPUTATION 2020

3

About Microservices

● Microservice architecture is more and more popular

● Adopted by industry leaders (Amazon, Netflix, Riot Games, etc...)

● Consists of independently deployable and manageable services

● Each microservice fulfils a single business capability

● Allow automated deployment

● Offer greater agility

● Reduce the complexity of handling application scalability

4

12th International Conference on Advanced Service Computing SERVICE COMPUTATION 2020

But...

● Microservices are highly volatile

● Microservices are very dynamic

● Microservices are continuously developed and deployed

● Like any other system, microservices face challenges with maintainability and evolution

This factors can lead to the introduction of poor solutions to recurring design and implementation

problems (ie. Antipatterns).

5

12th International Conference on Advanced Service Computing SERVICE COMPUTATION 2020

How can we automatically
identify antipatterns in
microservice-based systems ?

6

Approach

● Literature and open-source systems reviews

● 27 papers obtained describing microservices antipatterns

● 67 open-source microservice-based systems manually analyzed

● Establishment of a catalog of microservice antipatterns

● Definition of a meta-model for the automatic analysis

● Definition of detection rules for each of the antipatterns

7

12th International Conference on Advanced Service Computing SERVICE COMPUTATION 2020

Microservice antipatterns

Wrong cuts

8

12th International Conference on Advanced Service Computing SERVICE COMPUTATION 2020

Cyclic dependencies

Microservices organized around technical layers instead of
business capabilities.

Circularly co-dependent microservices

Microservice antipatterns

Mega Service

A microservice serving multiple business capabilities, not
manageable by a single team.

9

12th International Conference on Advanced Service Computing SERVICE COMPUTATION 2020

Nano Service

Multiple microservices working together to fulfil a single
business capability.

Microservice antipatterns

Shared libraries

10

12th International Conference on Advanced Service Computing SERVICE COMPUTATION 2020

Hardcoded endpoints

Single libraries / files used by multiple microservices.
URLs, IP addresses, hostnames and other endpoints

hardcoded in the source code.

Microservice antipatterns

Manual configuration

11

12th International Conference on Advanced Service Computing SERVICE COMPUTATION 2020

Configuration manually pushed for each microservice.

No API Gateway

Consumer applications communicate directly with
individual microservices.

Microservice antipatterns

Timeouts

12

12th International Conference on Advanced Service Computing SERVICE COMPUTATION 2020

No CI/CD

No Continuous Integration / Continuous Delivery
machinery in the process of developing, testing and

deploying microservices

Timeout values are set and hardcoded in HTTP requests
inside microservices source code.

Microservice antipatterns

Multiple service instances per host

13

12th International Conference on Advanced Service Computing SERVICE COMPUTATION 2020

Multiple microservices are deployed on a single host.

Shared persistence

Multiple microservices share a single database.

Microservice antipatterns

No API versioning

14

12th International Conference on Advanced Service Computing SERVICE COMPUTATION 2020

No information available about a microservice version.

Local logging

Microservices have their own logging mechanism.

Microservice antipatterns

No healthcheck

15

12th International Conference on Advanced Service Computing SERVICE COMPUTATION 2020

Insufficient monitoring

Microservices performance and failures are not tracked or
monitored.

Microservices are not periodically health-checked to verify
availability.

Meta-model definition

● The meta-model encapsulate the needed information to identify microservice antipatterns

● Consists of 13 components

● Each component contains some information about the system and its microservices

16

12th International Conference on Advanced Service Computing SERVICE COMPUTATION 2020

Meta-model components

17

12th International Conference on Advanced Service Computing SERVICE COMPUTATION 2020

System
Holds information about the system itself (Name, version, is git repository, etc...)

Meta-model components

18

12th International Conference on Advanced Service Computing SERVICE COMPUTATION 2020

Git repository
If the system is a git repository, contains information such as repository URL, number of commits, number

of contributors, etc…

Meta-model components

19

12th International Conference on Advanced Service Computing SERVICE COMPUTATION 2020

Microservice
Stores information about single microservices (programming languages, LOCs, etc...)

Meta-model components

20

12th International Conference on Advanced Service Computing SERVICE COMPUTATION 2020

Dependency
Contains information about a single dependency (Name, type, etc...)

Meta-model components

21

12th International Conference on Advanced Service Computing SERVICE COMPUTATION 2020

Config
Holds information about configuration (Key value pairs, etc...)

Meta-model components

22

12th International Conference on Advanced Service Computing SERVICE COMPUTATION 2020

Env
If available, represents environment variables used by the system

Meta-model components

23

12th International Conference on Advanced Service Computing SERVICE COMPUTATION 2020

Deploy
Contains deployment information (Docker instructions, etc...)

Meta-model components

24

12th International Conference on Advanced Service Computing SERVICE COMPUTATION 2020

Code
Stores information about a single source code file (Programming language, LOCs, etc...)

Meta-model components

25

12th International Conference on Advanced Service Computing SERVICE COMPUTATION 2020

Image
 If available, this component contains information about container images of the system

Meta-model components

26

12th International Conference on Advanced Service Computing SERVICE COMPUTATION 2020

Server
Holds information about deployment servers of the system

Meta-model components

27

12th International Conference on Advanced Service Computing SERVICE COMPUTATION 2020

HTTP
Stores information about HTTP requests (Endpoints, source file, etc...)

Meta-model components

28

12th International Conference on Advanced Service Computing SERVICE COMPUTATION 2020

Database
Stores information about database queries (query type, source file, etc...)

Meta-model components

29

12th International Conference on Advanced Service Computing SERVICE COMPUTATION 2020

Import
Contains information about imported classes and packages

Detection rules

For each antipattern, we established a set of detection rules to assess its presence or not in a given

microservice based system.

This rules are detailed in the following slides.

30

12th International Conference on Advanced Service Computing SERVICE COMPUTATION 2020

31

12th International Conference on Advanced Service Computing SERVICE COMPUTATION 2020

Wrong cuts One file type in source code, connects to other microservices containing only one file type

Cyclic dependencies Microservice performing calls to each other in a circular way

Mega service Relatively high number of lines of code, relatively high number of dependencies

Nano service Relatively low number of lines of code, relatively low number of dependencies

Shared libraries Binary files, source files and libraries shared between two or more microservices

Hardcoded endpoints No service discovery libraries in the dependencies, URLs and endpoints in the source code

Manual configuration No configuration management libraries in the dependencies, independent configuration files

No API gateway No API gateway libraries in the dependencies

32

12th International Conference on Advanced Service Computing SERVICE COMPUTATION 2020

Timeouts No circuit breaker libraries in the dependencies, hardcoded timeout values in the source code

No CI / CD No CI / CD libraries in the dependencies, no CI / CD information in the repository if available

Multiple service instances
per host

Shared deployment scripts between two or more microservices

Shared persistence Shared data / database configuration between two or more microservices

No API versioning No version information in endpoints and URLs, no version headers in HTTP requests

Local logging No distributed logging libraries in the dependencies

No healthcheck No healthcheck libraries in the dependencies, no healthcheck URL, no healthcheck instructions

Insufficient monitoring No monitoring libraries in the dependencies

Discussion

● There are no fully automated tool-based approach to identify microservice antipatterns in the

literature, and our approach aims to fill this gap

● Our meta-model only requires source code and do not rely on documentation and other artifacts

● We aim to help developers minimize antipatterns in their source code

● We contribute to the maintenance and evolution of microservice-based system with a generic,

comprehensive and consensual definitions of antipatterns and an approach to identify these

antipatterns

33

12th International Conference on Advanced Service Computing SERVICE COMPUTATION 2020

Threats to validity

● They are potentially other antipatterns that we did not find / include in our study

● The detection rules are subject to our interpretation and can be subjective (eg. Mega service).

However, we tried to minimize this by considering microservices as part of the system and not

standalone.

● We rely on lists of libraries and frameworks to identify some antipatterns, this lists can be

extended to include more libraries and frameworks.

34

12th International Conference on Advanced Service Computing SERVICE COMPUTATION 2020

Conclusion

● This presentation describe the foundation of our automatic tool-based approach for the

identification of antipatterns in microservice-based systems

● We propose an approach that is robust enough to identify the described antipatterns, yet still

extensible and flexible to evolve.

● The tool itself is currently work in progress

● The tool will be validated by manually analysing 28 microservice-based system to calculate

precision and recall

35

12th International Conference on Advanced Service Computing SERVICE COMPUTATION 2020

THANK YOU !

36

