
1Keep it in Sync! Consistency Approaches in Microservices – IARIA Service Computation 2020, Nice

Keep it in Sync!
Consistency Approaches for Microservices

- An Insurance Case Study -

A. Koschel, A. Hausotter (presenter)
M. Lange, S. Gottwald

Faculty of Business and Computer Science
University of Applied Sciences and Arts, Hannover

Ricklinger Stadtweg 120
30459 Hannover

{arne.koschel | andreas.hausotter}@hs-hannover.de

Service Computation 2020
October 25 – 29, 2020 – Nice, France

2Keep it in Sync! Consistency Approaches in Microservices – IARIA Service Computation 2020, Nice

Presenter

Dr. ANDREAS HAUSOTTER is a professor emeritus for distributed information systems and database systems
at the University for Applied Sciences and Arts, Hanover, Germany, Faculty of Business and Computer Sci -
ence. His area of specialization comprises service computing – including service-oriented Architectures
(SOA) and microservices – Java EE, webservices, distributed information systems, business process man-
agement, business rules management, and information modeling.

In 1979 he received his PhD in mathematics at Kiel University, Faculty of Mathematics and Natural Sci-
ences. After graduation he started his career with KRUPP ATLAS ELEKTRONIK, Bremen, as a systems analyst
and systems programmer in the area of real time processing. In 1984 he was hired as systems engineer
and group manager SNA Communications for NIXDORF COMPUTER, Paderborn. After that, he worked for
HAAS CONSULT, Hanover, as a systems engineer and product manager for traffic guidance systems.

In 1996 he was appointed professor of operating systems, networking and database systems at the University of Applied Sci-
ences and Arts, Hanover. He has been retired since March 2018.

From the beginning he was involved in several research projects in cooperation with industry partners. During his research
semester he developed a Java EE / EJB application framework. Based on this framework a web-based simulation software
for securities trading was implemented by his research group to train the apprentices of the industry partner.

In 2005, the Competence Center IT & Management (CC_ITM) was founded in cooperation with industry partners. Different
ambitious research projects have since then been carried out in the context of service-computing, microservices, cloud
computing, business process management, and business rules management.

3Keep it in Sync! Consistency Approaches in Microservices – IARIA Service Computation 2020, Nice

 Competence Center Information Technology & Management (CC_ITM)
 Institute at the University of Applied Sciences and Arts, Hannover

 Founded in 2005 by colleagues from the departments of Business Informa-
tion Systems and Computer Science

 Members: Faculty staff, industry partners (practitioners) of different areas of
businesses

 Main objective

 Knowledge transfer between university and industry

 Research topics

 Management of information processing

 Service computing, including Microservices, Service-oriented Architectures
(SOA), Business Process Management (BPM), Business Rules Management
(BRM)

 Cloud Computing

CC_ITM

4Keep it in Sync! Consistency Approaches in Microservices – IARIA Service Computation 2020, Nice

Agenda

 Introduction

 Background

 Shaping the Microservice Architecture

 Consistency Assurance in the Microservice Architecture

 Conclusion & Future Work

 References

5Keep it in Sync! Consistency Approaches in Microservices – IARIA Service Computation 2020, Nice

 Microservices

 Architectural style for complex application systems

 Software is split into lightweight, independently deployable components.

 Each component may use different technologies.

 Components communicate over standardized network protocols.

 Potential and benefits of the architectural style

 Maintainability, scalability, fault tolerance, ...

 Attracted attention in the software development industry

 Challenges of the architectural style

 Data often persisted redundantly to provide fault tolerance

 Synchronization of those data to provide consistency may be an issue

 Hampers the adoption

Motivation

6Keep it in Sync! Consistency Approaches in Microservices – IARIA Service Computation 2020, Nice

 Case study from the insurance industry

 Migration of a monolithic core application towards microservices

 Focuses on consistency issues.

 Model-driven design

 Based on Domain Driven Design (DDD)
 Bounded Contexts & Domain Models

 Consideration of compliance requirements.

 Consistency

 General approaches for synchronizing redundant data in microservices

 Trade-off: loose coupling vs. level of consistency

 Best practice for synchronizing data in the migrated core application.

 Overall Goal

 Examine the suitability of microservice architecture for the insurance industry.

Goal & Major Contribution

7Keep it in Sync! Consistency Approaches in Microservices – IARIA Service Computation 2020, Nice

Agenda

 Introduction

 Background

 Shaping the Microservice Architecture

 Consistency Assurance in the Microservice Architecture

 Conclusion & Future Work

 References

8Keep it in Sync! Consistency Approaches in Microservices – IARIA Service Computation 2020, Nice

Related & Prior Work

Microservices in
Higher Education

[17]

Consistency for
Microservices

[18]

Prior Work

Microservice
Migration
[6][7][8]

Advanced Topics
in Distributed

Systems
[13][14][23]

Compliance
[16][21]

Microservices
[1][3][4][5]

GDV Reference
Architecture

[19]

Research Project: Potential and Challenges of Microservices in the Insurance Industry

Domain Driven
Design
[15][20]

Microservice
Adoption

[2][9]

Ground Work Related Work
Specifications and

Guidelines

9Keep it in Sync! Consistency Approaches in Microservices – IARIA Service Computation 2020, Nice

Partner Management System

 Overview

 Core application for managing
partners of an insurance company

 Based on the Reference Architecture
for German Insurance Companies
(VAA)

 Basically a CRUD application.

 Challenges

 Implemented as a single deploy-
ment unit

 Heavily changing load profile
 Poor flexibility, scalability and fault

tolerance.

10Keep it in Sync! Consistency Approaches in Microservices – IARIA Service Computation 2020, Nice

Partner Management System

Partner
● Natural (eg. clients, appraisers,

lawyers) or legal (eg. other in-
surance companies) person

● Is in relation to the insurance
company.

PartnerPartnerRelation
● A partner may have

relations to other
partners.

PartnerContract
● Usually, a partner enters one

ore more contracts with the in-
surance company.

● Does not represent the con-
tract itself, but its proxy object.

PartnerBankAccount
● A partner must have one or

more bank accounts.
● Does not represent the bank

account itself, but its proxy
object.

Communication
● The company may com-

municate with the partner
via mail and/or phone

11Keep it in Sync! Consistency Approaches in Microservices – IARIA Service Computation 2020, Nice

Agenda

 Introduction

 Background

 Shaping the Microservice Architecture

 Consistency Assurance in the Microservice Architecture

 Conclusion & Future Work

 References

12Keep it in Sync! Consistency Approaches in Microservices – IARIA Service Computation 2020, Nice

Domain Driven Design (DDD) at a Glance

 Domain Driven Design

 Approach to Software Development (Evans, 2004)

 Capturing relevant domain knowledge in Domain Models
 Collaborative modeling of domain experts and software engineers.

 Basic concepts of DDD

 Bounded Context – Description of a boundary within which a particular
model is defined and applicable

 Domain Model – System of abstractions, describes and relevant aspects of
the domain.

 DDD patterns
 Refine the structural domain models for Model-driven Design.

 Strategic patterns of interactions

 Manage the trade-off between loose coupling between bounded con-
texts and the communication needs between development teams.

13Keep it in Sync! Consistency Approaches in Microservices – IARIA Service Computation 2020, Nice

Bounded Contexts – Design Objectives

 Self-contained and highly cohesive
 Ideally, modifications and adjustments effect just one bounded context /

microservice.

 Promotes a better manageability of the business complexity.

 Efficient scalability
 Run multiple instances of the same microservice.

 Allows the system to adapt to the changing load during the day.

 Compliance – IT alignment
 Insurance companies are considered as “critical infrastructure”, i.e. they

are essential for society and economy.

 Application systems in the insurance industry have to strictly comply with
compliance requirements, eg.

 “Supervisory Requirements for IT in Insurance Undertakings (VAIT)”

 General Data Protection Regulation (GDPR).

14Keep it in Sync! Consistency Approaches in Microservices – IARIA Service Computation 2020, Nice

Bounded Contexts – Compliance – IT alignment

Protection
Level

Personal Data ... Examples Degree of
Damage

A … which have been made freely available by the
persons concerned.

Data visible in the phone book. minor

B … whose improper handling is not expected to
cause particular harm, but which has not been
made freely accessible by the person
concerned.

Restricted public files. minor

C … whose improper handling could damage the
person concerned in his social position or
economic circumstances (“reputation”).

Income, property tax,
administrative offenses.

manage-
able

D … whose improper handling could significantly
effect the social position or economic
circumstances of the person concerned
(“existence”).

Criminal offenses, employment
evaluations, health data.

substantial

E … whose improper handling could impair the
health, life of freedom of the person concerned.

Data on persons who my be
victims of a criminal offense.

major

 Modeling of the bounded contexts promotes different protection levels.

 Partner Management System only processes data belonging to protec-
tion levels A up to C.

15Keep it in Sync! Consistency Approaches in Microservices – IARIA Service Computation 2020, Nice

Bounded Contexts & Domain Models

 Bounded contexts
 Modeled by the insurance company’s

domain experts and software engineers
using event storming

 Partner, Contract, Communica-
tions, Account.

 DDD patterns
 Entities – model objects with identity

 Value Objects – model values without
an identity (such as proxy objects).

 Strategic patterns of interaction

 Anticorruption Layer – each Bounded
Context has a different understanding
of the entity Partner.

 In our case, each Bounded Context is mapped to exactly one microservice.

16Keep it in Sync! Consistency Approaches in Microservices – IARIA Service Computation 2020, Nice

Technical Microservice Architecture

 Microservices are implemented as REST Web
Services based on the Spring framework.

 Persistency

 Each microservice has its own data
management using PostgreSQL DB.

 Partner data kept in sync across all
microservices by the partner-
service using REST calls.

 Infrastructure and technical services

 AngularJS: Single page front end

 Netflix OSS stack: Service discovery,
API gateway

 ELK (Elasticsearch, Logstash, Kibana)
stack: monitoring & logging.

 All components are deployed in separate Docker containers.

17Keep it in Sync! Consistency Approaches in Microservices – IARIA Service Computation 2020, Nice

Design of the Microservices – partner-service

● Annotation @RestController
forces the Spring Framework to
create an instance of this class.

● Gets an instance of the Natu-
ralPersonService injected.

● The controller delegates incoming
HTTP requests to the NaturalPer-
sonService.

● Annotation @Service forces the
Spring Framework to manage an
instance of this class.

● Implements the business logic of
the partner-service.

● Gets an instance of the Natu-
ralPersonRepository injected.

● Interacts with the
service’s con-
sumers.

● HTTP facade for
the business layer.

Provides the
service’s busi-
ness logic.

Provides ob-
ject-relational
(OR) mapping
features.

● Annotation @Repository
forces the Spring Framework
to use Spring Data JPA as an
OR mapping framework.

● Managed entity classes are
annotated with @Entity.

18Keep it in Sync! Consistency Approaches in Microservices – IARIA Service Computation 2020, Nice

Evaluation of the Microservice Architecture

 Benefits

 Scalability, i.e. run multiple instances of the same
microservice

 System can adapt to changing loads.

 Robustness & fault tolerance, i.e. Partner data
are kept redundant.

 Services can resolve key relationships to
partner data even if the partner-service
is unavailable.

 Challenges

 Distributed Monitoring and Logging
 Provided by the ELK (Elasticsearch, Logstash, Kibana) stack

 Consistency assurance

 As partner data are kept redundant, they must be synchronized across all
services.

19Keep it in Sync! Consistency Approaches in Microservices – IARIA Service Computation 2020, Nice

Evaluation of the Microservice Architecture

 Drawbacks of the implemented synchronization
method

 Fault tolerance: If the partner-service is
temporarily unavailable, other services are not
notified about changes.

 Effects consistency across the services

 Synchronicity: In case of changes of partner
data, a thread of the partner-service is in a
blocked state until all services have been
notified.

 Effects response time of the partner-services.

 Extensibility: partner-Service keeps a list of ser-
vices that have to be notified on changes.

 A static list requires the system to be redeployed
after modifications.

Synchronization method:
Partner data are kept in
sync across all services
by the partner-ser-
vice using synchronous
REST calls.

20Keep it in Sync! Consistency Approaches in Microservices – IARIA Service Computation 2020, Nice

Agenda

 Introduction

 Background

 Shaping the Microservice Architecture

 Consistency Assurance in the Microservice Architecture

 Conclusion & Future Work

 References

21Keep it in Sync! Consistency Approaches in Microservices – IARIA Service Computation 2020, Nice

General Approaches to Ensuring Consistency

 Synchronous distribution
 Approach

 Owner of the data propagates any change to all interested services.

 A service registry may be used to keep the information which services are
interested in which data.

 Pros

 Provides a high degree of consistency.

 Cons

 Notifying a large number of services may effect load and response time.

22Keep it in Sync! Consistency Approaches in Microservices – IARIA Service Computation 2020, Nice

 Polling
 Approach

 The responsibility of synchronization is shifted to the interested services
themselves.

 Services ask for new data using an interface provided by the service con-
taining the master data.

 Pros

 The size of the inconsistency window can be controlled by each service in-
dependently.

 Cons

 The frame in which the data differs depends on the polling interval.

 Provides eventual consistency

General Approaches to Ensuring Consistency

23Keep it in Sync! Consistency Approaches in Microservices – IARIA Service Computation 2020, Nice

 Publish – Subscribe
 Approach

 Following the Publish-subscribe pattern, an event is published to a topic on
every change of the master data.

 Interested services subscribe to this topic, receive events and update their
own data accordingly.

 Pros

 The system is robust against failures, if the underlaying messaging oriented
middleware persists events.

 Approach is suitable for the resilient and lightweight nature of microser-
vices.

 Cons

 Data are inconsistent until the event is delivered and processed.

 Provides eventual consistency

General Approaches to Ensuring Consistency

24Keep it in Sync! Consistency Approaches in Microservices – IARIA Service Computation 2020, Nice

 Event sourcing
 Approach

 Upon any change in master data an event, that represents the state
change, is published.

 The sequence of all events is persisted in an append-only event store.

 Interested services can recreate the current state by replaying the events.

 Pros

 High degree of consistency
 Cons

 Centralized event store weakens loose coupling.

 Generating the current data from the sequence is a challenge.

General Approaches to Ensuring Consistency

25Keep it in Sync! Consistency Approaches in Microservices – IARIA Service Computation 2020, Nice

Best Practices for Synchronizing Partner Data

 Initial situation

 As shown above, there are different approaches to manage consistency.

 Each approach has its own advantages and disadvantages.

 Above all, there are trade-offs between

 Level of consistency

 Microservice design principles, i.e. loose coupling and decentralized data
management.

 Goal

 Find the most suitable level of consistency.

 Method

 Specify possible inconsistent states of the data.

 Combine them with typical use cases of your system.

26Keep it in Sync! Consistency Approaches in Microservices – IARIA Service Computation 2020, Nice

Best Practices for Synchronizing Partner Data

 Redundant data
 Name, partnerID

 Inconsistent states, due to CRUD operations

 New partner ist not yet present in the system.

 Name and / or partnerID is not up-to-date.

 Deleted partner is not yet deleted everywhere.

 Typical use cases
 Sending a letter via mail

 Conclusion of an insurance contract.

 Result

 The system is robust against inconsistent states.

 Reason: Business processes are designed resilient against delays and errors.

 Publish-Subscribe approach is the most suitable solution.

27Keep it in Sync! Consistency Approaches in Microservices – IARIA Service Computation 2020, Nice

Technical Microservice Architecture – Update

On any change of part-
ner data (name, part-
nerID) partner-ser-
vice publishes an event.

● A service which is inter-
ested in any change,
subscribes on this topic.

● If the services receives
an event it can update
their own data accord-
ingly.

28Keep it in Sync! Consistency Approaches in Microservices – IARIA Service Computation 2020, Nice

Agenda

 Introduction

 Background

 Shaping the Microservice Architecture

 Consistency Assurance in the Microservice Architecture

 Conclusion & Future Work

 References

29Keep it in Sync! Consistency Approaches in Microservices – IARIA Service Computation 2020, Nice

Conclusion & Future Work

 Conclusion

 Our paper presents case study on microservices from the insurance industry.

 Insights are given in the process to migrate a monolithic core application
towards a modern microservice architecture including ...

 … design, implementation, and special topics such as compliance.

 Synchronization of redundant data across microservices is key issue.

 Four approaches to manage the consistency are pointed out.

 A best practice to identify the most suitable approach was designed and
implemented.

 Future work

 Tests of the microservice architecture under real-world conditions
 Integration of tests in a CI/CD pipeline
 Application of our findings to a more sophisticated example.

30Keep it in Sync! Consistency Approaches in Microservices – IARIA Service Computation 2020, Nice

Agenda

 Introduction

 Background

 Shaping the Microservice Architecture

 Consistency Assurance in the Microservice Architecture

 Conclusion & Future Work

 References

31Keep it in Sync! Consistency Approaches in Microservices – IARIA Service Computation 2020, Nice

References

[1]
M. Fowler and J. Lewis, “Microservices a definition of this new architectural
term,” https://martinfowler.com/articles/microservices.html, March 2014, [re-
trieved: 05, 2020].

[2]
H. Knoche and W. Hasselbring, “Drivers and barriers for microservice adoption –
a survey among professionals in germany,” Enterprise Modelling and Informa-
tion Systems Architectures (EMISAJ), vol. 14, 2019, p. 10.

[3] E. Wolff, Microservices: Flexible Software Architecture. Addison-Wesley Profes-
sional, 2016.

[4]
S. Newman, Building microservices: designing fine-grained systems. O’Reilly
Media, Inc., 2015.

[5] C. Richardson, Microservices Patterns: With examples in Java. Manning Public-
ations, 2018.

[6]
A. Balalaie, A. Heydarnoori, P. Jamshidi, D. A. Tamburri, and T. Lynn, “Mi-
croservices migration patterns,” Software: Practice and Experience, vol. 48, no.
11, 2018, pp. 2019–2042.

https://martinfowler.com/articles/microservices.html

32Keep it in Sync! Consistency Approaches in Microservices – IARIA Service Computation 2020, Nice

References

[7]
A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices Architecture En-
ables DevOps: Migration to a Cloud-Native Architecture,” IEEE Software, vol.
33, no. 3, 2016, pp. 42–52.

[8]
H. Knoche and W. Hasselbring, “Using microservices for legacy software mod-
ernization,” IEEE Software, vol. 35, no. 3, 2018, pp. 44–49.

[9]
W. Hasselbring and G. Steinacker, “Microservice architectures for scalability,
agility and reliability in e-commerce,” in 2017 IEEE International Conference on
Software Architecture Workshops (ICSAW). IEEE, 2017, pp. 243–246.

[10]
A. S. Tanenbaum and M. Van Steen, Distributed Systems: Pearson New Interna-
tional Edition - Principles and Paradigms. Harlow: Pearson Education Limited,
2013.

[11]
A. S. Tanenbaum, Modern Operating Systems. New Jersey: Pearson
Prentice Hall, 2009.

[12]
E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns -
Elements of Reusable Object-Oriented Software. Amsterdam: Pearson
Education, 1994.

33Keep it in Sync! Consistency Approaches in Microservices – IARIA Service Computation 2020, Nice

References

[13] H. Garcia-Molina and K. Salem, “Sagas,” vol. 16, no. 3. ACM, 1987.

[14]
M. Fowler, “Event Sourcing,” https://martinfowler.com/eaaDev/Event
Sourcing.html, December 2005, [retrieved: 05, 2020].

[15]
E. J. Evans, Domain-driven Design - Tackling Complexity in the Heart of Soft-
ware. Boston: Addison-Wesley Professional, 2004.

[16]
“Versicherungsaufsichtliche Anforderungen an die IT (VAIT) (2019) vom
20.03.2019,”https://www.bafin.de/SharedDocs/Downloads/DE/Rundschreiben/
dl rs 1810 vait va.html, March 2019, [retrieved: 05, 2020].

[17]

M. Lange, A. Hausotter, and A. Koschel, “Microservices in Higher Education -
Migrating a Legacy Insurance Core Application,” in 2nd International Con-fer-
ence on Microservices (Microservices 2019), Dortmund, Germany, 2019,
https://www.confmicro.services/2019/papers/Microservices 2019 paper 8.pdf,
[retrieved: 05, 2020].

https://www.confmicro/

34Keep it in Sync! Consistency Approaches in Microservices – IARIA Service Computation 2020, Nice

References

[18]

A. Koschel, A. Hausotter, M. Lange, and P. Howeihe, “Consistency for
Microservices - A Legacy Insurance Core Application Migration Example,”
in SERVICE COMPUTATION 2019, The Eleventh International Conference on Ad-
vanced Service Computing, Venice, Italy, 2019, https://www.thinkmind.org/
index.php?view=article&articleid=service computation 2019 1 10 18001, [re-
trieved: 05, 2020].

[19]
GDV, “The application architecture of the insurance industry – applications
and principles,” 1999.

[20] V. Vernon, Implementing domain-driven design. Addison-Wesley, 2013.

[21]
“Schutzstufenkonzept des LfD Niedersachsen,”
https://www.lfd.niedersachsen.de/technik und organisation/schutzstufen/
schutzstufen-56140.html, October 2018, [retrieved: 05, 2020].

https://www.thinkmind.org/
https://www.lfd.niedersachse/

35Keep it in Sync! Consistency Approaches in Microservices – IARIA Service Computation 2020, Nice

References

[22]
A. Roland, “Secrecy, technology, and war: Greek fire and the defense
of byzantium, 678-1204,” Technology and Culture, vol. 33, no. 4, 1992, pp. 655–
679.

[23]
W. Vogels, “Eventually Consistent,” Commun. ACM, vol. 52,
no. 1, Jan. 2009, pp. 40–44. [Online]. Available:
http://doi.acm.org/10.1145/1435417.1435432, [retrieved: 05, 2020].

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35

