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 Competence Center Information Technology & Management (CC_ITM)
 Institute at the University of Applied Sciences and Arts, Hannover

 Founded in 2005  by colleagues from the departments of Business Informa-
tion Systems and Computer Science

 Members: Faculty staff, industry partners (practitioners) of different areas of 
businesses

 Main objective 

 Knowledge transfer between university and industry

 Research topics 

 Management of information processing

 Service computing, including Microservices, Service-oriented Architectures 
(SOA), Business Process Management (BPM), Business Rules Management 
(BRM)

 Cloud Computing

CC_ITM
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 Microservices 

 Architectural style for complex application systems

 Software is split into lightweight, independently deployable components.

 Each component may use different technologies.

 Components communicate over standardized network protocols.

 Potential and benefits of the architectural style

 Maintainability, scalability, fault tolerance, ...

 Attracted attention in the software development industry

 Challenges of the architectural style

 Data often persisted redundantly to provide fault tolerance

 Synchronization of those data to provide consistency may be an issue

 Hampers the adoption

Motivation
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 Case study from the insurance industry

 Migration of a monolithic core application towards microservices 

 Focuses on consistency issues.

 Model-driven design 

 Based on Domain Driven Design (DDD)
 Bounded Contexts & Domain Models

 Consideration of compliance requirements.  

 Consistency 

 General approaches for synchronizing redundant data in microservices 

 Trade-off: loose coupling vs. level of consistency

 Best practice for synchronizing data in the migrated core application.

 Overall Goal

 Examine the suitability of microservice architecture for the insurance industry.

Goal & Major Contribution
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Partner Management System 

 Overview

 Core application for managing 
partners of an insurance company

 Based on the Reference Architecture 
for German Insurance Companies 
(VAA)

 Basically a CRUD application.

 Challenges

 Implemented as a single deploy-
ment unit

 Heavily changing load profile
 Poor flexibility, scalability and fault 

tolerance.
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Partner Management System 

Partner
● Natural (eg. clients, appraisers, 

lawyers) or legal (eg. other in-
surance companies) person

● Is in relation to the insurance 
company.

PartnerPartnerRelation
● A partner may have 

relations to other 
partners. 

PartnerContract
● Usually, a partner enters one 

ore more contracts with the in-
surance company.

● Does not represent the con-
tract itself, but its proxy object. 

PartnerBankAccount
● A partner must have one or 

more bank accounts. 
● Does not represent the bank 

account itself, but its proxy 
object. 

Communication
● The company may com-

municate with the partner 
via mail and/or  phone
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Domain Driven Design (DDD) at a Glance

 Domain Driven Design

 Approach to Software Development (Evans, 2004)

 Capturing relevant domain knowledge in Domain Models
 Collaborative modeling of domain experts and software engineers.

 Basic concepts of DDD

 Bounded Context – Description of a boundary within which a particular 
model is defined and applicable

 Domain Model – System of abstractions, describes and relevant aspects of 
the domain.

 DDD patterns
 Refine the structural domain models for Model-driven Design.

 Strategic patterns of interactions

 Manage the trade-off between loose coupling between bounded con-
texts and the communication needs between development teams. 
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Bounded Contexts – Design Objectives

 Self-contained and highly cohesive
 Ideally, modifications and adjustments effect just one bounded context / 

microservice.

 Promotes a better manageability of the business complexity.

 Efficient scalability
 Run multiple instances of the same microservice. 

 Allows the system to adapt to the changing load during the day.

 Compliance – IT alignment
 Insurance companies are considered as “critical infrastructure”, i.e. they 

are essential for society and economy.

 Application systems in the insurance industry have to strictly comply with 
compliance requirements, eg.  

 “Supervisory Requirements for IT in Insurance Undertakings (VAIT)” 

 General Data Protection Regulation (GDPR).
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Bounded Contexts – Compliance – IT alignment

Protection 
Level

Personal Data ... Examples Degree of 
Damage

A … which have been made freely available by the 
persons concerned.

Data visible in the phone book. minor

B … whose improper handling is not expected to 
cause particular harm, but which has not been 
made freely accessible by the person 
concerned.

Restricted public files. minor

C … whose improper handling could damage the 
person concerned in his social position or 
economic circumstances (“reputation”).

Income, property tax, 
administrative offenses.

manage-
able

D … whose improper handling could significantly 
effect the social position or economic 
circumstances of the person concerned 
(“existence”).

Criminal offenses, employment 
evaluations, health data.

substantial

E … whose improper handling could impair the 
health, life of freedom of the person concerned. 

Data on persons who my be 
victims of a criminal offense.

major

 Modeling of the bounded contexts promotes different protection levels.

 Partner Management System only processes data belonging to protec-
tion levels A up to C.
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Bounded Contexts & Domain Models

 Bounded contexts
 Modeled by the insurance company’s

domain experts and software engineers
using event storming

 Partner, Contract, Communica-
tions, Account. 

 DDD patterns
 Entities – model objects with identity

 Value Objects – model values without
an identity (such as proxy objects).

 Strategic patterns of interaction

 Anticorruption Layer – each Bounded
Context has a different understanding 
of the entity Partner. 

 In our case, each Bounded Context is mapped to exactly one microservice.



16Keep it in Sync! Consistency Approaches in Microservices  – IARIA Service Computation 2020, Nice

Technical Microservice Architecture

 Microservices are implemented as REST Web 
Services based on the Spring framework.

 Persistency

 Each microservice has its own data 
management using PostgreSQL DB.

 Partner data kept in sync across all
microservices by the partner-
service using REST calls.

 Infrastructure and technical services 

 AngularJS: Single page front end

 Netflix OSS stack: Service discovery,  
API gateway

 ELK (Elasticsearch, Logstash, Kibana) 
stack: monitoring & logging.

 All components are deployed in separate Docker containers.
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Design of the Microservices – partner-service

● Annotation @RestController 
forces the Spring Framework to 
create an instance of this class.

● Gets an instance of the Natu-
ralPersonService injected. 

● The controller delegates incoming 
HTTP requests to the NaturalPer-
sonService.

● Annotation @Service forces the 
Spring Framework to manage an 
instance of this class. 

● Implements the business logic of 
the partner-service.

● Gets an instance of the Natu-
ralPersonRepository injected.

● Interacts with the 
service’s con-
sumers.

● HTTP facade for 
the business layer.

Provides the 
service’s busi-
ness logic.

Provides  ob-
ject-relational 
(OR) mapping 
features.

● Annotation @Repository 
forces the Spring Framework 
to use Spring Data JPA as an 
OR mapping framework.

● Managed entity classes are 
annotated with @Entity.
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Evaluation of the Microservice Architecture

 Benefits 

 Scalability, i.e. run multiple instances of the same 
microservice

 System can adapt to changing loads.

 Robustness & fault tolerance, i.e. Partner data 
are kept redundant.

 Services can resolve key relationships to 
partner data even if the partner-service 
is unavailable.

 Challenges 

 Distributed Monitoring and Logging
 Provided by the ELK (Elasticsearch, Logstash, Kibana) stack   

 Consistency assurance 

 As partner data are kept redundant, they must be synchronized across all 
services. 
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Evaluation of the Microservice Architecture

 Drawbacks of the implemented synchronization 
method

 Fault tolerance: If the partner-service is 
temporarily unavailable, other services are not 
notified about changes.

 Effects consistency across the services

 Synchronicity: In case of changes of partner 
data, a thread of the partner-service is in a 
blocked state until all services have been 
notified.

 Effects response time of the partner-services.

 Extensibility: partner-Service keeps a list of ser-
vices that have to be notified on changes.

 A static list requires the system to be redeployed 
after modifications.

Synchronization method:
Partner data are kept in 
sync across all services 
by the partner-ser-
vice using synchronous 
REST calls.
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General Approaches to Ensuring Consistency

 Synchronous distribution
 Approach

 Owner of the data propagates any change to all interested services.

 A service registry may be used to keep the information which services are 
interested in which data. 

 Pros

 Provides a high degree of consistency.

 Cons

 Notifying a large number of services may effect load and response time.
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 Polling
 Approach

 The responsibility of synchronization is shifted to the interested services 
themselves.

 Services ask for new data using an interface provided by the service con-
taining the master data.

 Pros

 The size of the inconsistency window can be controlled by each service in-
dependently.

 Cons

 The frame in which the data differs depends on the polling interval. 

 Provides eventual consistency

General Approaches to Ensuring Consistency
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 Publish –  Subscribe
 Approach

 Following the Publish-subscribe pattern, an event is published to a topic on 
every change of the master data.

 Interested services subscribe to this topic, receive events and update their 
own data accordingly.  

 Pros 

 The system is robust against failures, if the underlaying messaging oriented 
middleware persists events. 

 Approach is suitable for the resilient and lightweight nature of microser-
vices.

 Cons 

 Data are inconsistent until the event is delivered and processed.

 Provides eventual consistency

General Approaches to Ensuring Consistency
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 Event sourcing
 Approach

 Upon any change in master data an event, that represents the state 
change,  is published. 

 The sequence of all events is persisted in an append-only event store. 

 Interested services can recreate the current state by replaying the events. 

 Pros

 High degree of consistency
 Cons 

 Centralized event store weakens loose coupling. 

 Generating the current data from the sequence is a challenge. 

General Approaches to Ensuring Consistency
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Best Practices for Synchronizing Partner Data

 Initial situation

 As shown above, there are different approaches to manage consistency.

 Each approach has its own advantages and disadvantages.

 Above all, there are trade-offs between 

 Level of consistency 

 Microservice design principles, i.e. loose coupling and decentralized data 
management. 

 Goal 

 Find the most suitable level of consistency.

 Method

 Specify possible inconsistent states of the data.

 Combine them with typical use cases of your system.  
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Best Practices for Synchronizing Partner Data

 Redundant data
 Name, partnerID

 Inconsistent states, due to CRUD operations 

 New partner ist not yet present in the system.

 Name and / or partnerID is not up-to-date.

 Deleted partner is not yet deleted everywhere.

 Typical use cases
 Sending a letter via mail

 Conclusion of an insurance contract.

 Result

 The system is robust against inconsistent states. 

 Reason: Business processes are designed resilient against delays and errors.

 Publish-Subscribe approach is the most suitable solution.



27Keep it in Sync! Consistency Approaches in Microservices  – IARIA Service Computation 2020, Nice

Technical Microservice Architecture – Update

On any change of part-
ner data (name, part-
nerID) partner-ser-
vice publishes an event.

● A service which is inter-
ested in any change, 
subscribes on this topic. 

● If the services receives 
an event it can update 
their own data accord-
ingly. 
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Conclusion & Future Work 

 Conclusion

 Our paper presents case study on microservices from the insurance industry.

 Insights are given in the process to migrate a monolithic core application 
towards a modern microservice architecture including ...

 … design, implementation, and special topics such as compliance.

 Synchronization of redundant data across microservices is key issue.

 Four approaches to manage the consistency are pointed out.

 A best practice to identify the most suitable approach was designed and 
implemented.  

 Future work

 Tests of the microservice architecture under real-world conditions
  Integration of tests in a CI/CD pipeline
 Application of our findings to a more sophisticated example. 
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