

Optimization Analysis of the Integrated Microcoil Geometry Parameters Influence on the Uniformity of the Magnetic Field Distribution

Miha Gradišek, Janez Trontelj

Presenter: Miha Gradišek

miha.gradisek@fe.uni-lj.si

Laboratory for Microelectronics, Faculty of Electrical Engineering, Tržaška 25, 1000 Ljubljana

University of Ljubljana, Slovenia

Miha Gradišek

- Researcher at Faculty of Electrical Engineering, University of Ljubljana, Slovenia
- Development of the SoC and ASIC designs in 180nm technology (Virtuoso Cadence & SEN)
- MEMS (incorporating Hall sensors)
- COMSOL Multiphysics simulations of magnetic systems
- 3D modeling (SolidWorks)

Motivation

- Microcoil (µCoil) used in System on Chip (SoC) where on chip magnetic field generation is desired
- Example is BIST (Build in Self Test)
- Characterization & compensation of magnetic field sensor (Magnetoresistors or Hall element) sensitivity
- On-chip generated magnetic field should be uniformly distributed
- Increasing demand for:
 - measurement precision
 - reliability

Developed for the ASIC

Temperature compensated magnetic field sensor

µCoil Optimization

- Two contradictory conditions (optimization needed):
 - Produce high magnetic field B_z (higher bias current /)
 - Efficient µCoil with low heating
- Produce uniformly distributed field
- Optimization parameters:

Control variable / Constraints	Symb ol	Lower bound	Upper bound
µCoil radius	r	10 (µm)	50 (µm)
Number of µCoil turns	Ν	1	3

Why uniformly distributed magnetic field?

Optimization process

- Parametrized 3D model (Silodworks)
- Optimizator COMSOL Multiphysics
- Optimization in range of tech. parameters
- MonteCarlo approach (find global optimum)

Optimization process

- Multi-optimization problem composed of 3 objective functions:
 - Minimize µCoil resistance

$$Q_R = \frac{R_{COIL} - R_{MIN}}{R_{AVG}} * k_R$$

• Minimize standard deviation of mag. field.

$$Q_{stdB} = \frac{\left(\frac{\sigma_B}{B_{Z0}}\right) - \left(\frac{\sigma_B}{B_{Z0}}\right)_{MIN}}{\left(\frac{\sigma_B}{B_{Z0}}\right)_{AVG}} * k_{stdB}$$

• Assign desired significance to mentioned two objective functions:

$$Q_{combined} = abs(1 - \frac{Q_R}{Q_{stdB}})$$

Optimization process

- Finite Element Method
- Mesh with high precision
- Bz uniformity on the red line
 - Sensor location plane
- Additional constraint:
 - Bz>1mT (not achievable at all planes)

Shape of µCoil

- With respect to resistance and adoption to the maximum dimension of the Hall element, the octagon shape is chosen for the optimization process
- Limited to straight lines
- Minimal B_z deviation regarding shapes

Number of µCoil sides	μCoil resistance (Ω)
4	4.40
6	3.98
8	3.84
10	3.82
12	3.76

Optimization solution

i	Metal layer	r _i (μm)	N	Q _R	Q _{stdB}	Q _{combined}	B _z (mT)	
1	m _i	14.3	3	0.253	0.413	1.053	1.017	
2	m _i	12.2	3	0.209	0.363	0.998	1.055	
3	m _i	10.6	2	0.084	0.049	0.860	0.643	
4	m _i	10.0	3	0.159	0.330	1.007	0.646	

Acquired optimized 3D model of the planar μ Coil realized at four metal layers.

Optimized vs. non-optimized model of µcoil

 Both coils are designed to produce approximately the same average magnetic flux density of B_z=3.76mT

Distribution of uniform magnetic flux density

- Streamline of magnetic flux density in the volume of simulation
- Distribution of magnetic flux density in plane of Hall sensor

Conclusions

- Optimization of CMOS μcoil in terms of efficiency (min. thermal looses) and performance (maximize the uniformity of the magnetic field in the plane of the sensor)
- Developed for the temperature compensated ASIC where onchip reference magnetic field generation is desired
- Multi-objective function with objectives, taking into account CMOS technology rules
- Generation of approximately B_z=3.76mT of average magnetic flux density

Thank you for your attention