Dynamic Mode AFM Measurement of CMUT Diaphragm Deflection Profile

Sazzadur Chowdhury
Department of Electrical and Computer Engineering
University of Windsor
Windsor, ON, N9B 3P4, Canada
e-mail: sazzadur@uwindsor.ca
Sazzadur Chowdhury Bio

• Sazzadur Chowdhury is a professor in the department of Electrical and Computer Engineering in the University of Windsor, Windsor, Ontario, Canada and is the director of the MEM lab in the University
• The MEMS Lab is dedicated to develop microsystems to provide advanced healthcare, automotive safety, and security
• His current research interest is in the areas of Microscale sensing and actuation, Solid state radars, Ultrasonic transducers, Microfabrication, and 3-D heterogeneous integration
• He was awarded 10 USA and Canadian patents in the areas of MEMS based ultrasonic transducers, radars, and heterogeneous integration
• He published 70 peer reviewed research papers
Abstract

• Atomic Force Microscopy (AFM) measurement results of the deflection shape of a Capacitive Micromachined Ultrasonic Transducer (CMUT) diaphragm has been presented.

• The AFM measurements were carried out using the dynamic mode operation of an atomic force microscope (FlexAFM™, Nanosurf AG).

• The measurement results were used to calculate the roughness parameters and construct the post fabricated zero bias 3D deflection shapes of the CMUT diaphragm.

• The measured deflection shape of the CMUT diaphragm can be used to determine CMUT diaphragm physical properties, such as residual stress, to facilitate more accurate calibration.
CMUT Operating Principle

- A typical CMUT geometry is built to have a square or circular diaphragm separated from a fixed back plate by a small air gap or vacuum.
- Basically, a variable capacitor.
- When an AC voltage of desired frequency is superimposed in addition to the bias voltage, the diaphragm vibrates to generate ultrasound.
- When the biased CMUT is exposed to an incoming ultrasound field, the diaphragm deforms to change the capacitance that generates a voltage.
- A control circuit controls the switch to effect mode switching.
CMUT Specifications

Measured CMUT Geometry

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diaphragm laminate thickness</td>
<td>800</td>
<td>nm</td>
</tr>
<tr>
<td>Gold layer thickness</td>
<td>100</td>
<td>nm</td>
</tr>
<tr>
<td>Silicon device layer thickness</td>
<td>700</td>
<td>nm</td>
</tr>
<tr>
<td>Cavity thickness</td>
<td>1</td>
<td>μm</td>
</tr>
<tr>
<td>Cavity width</td>
<td>28</td>
<td>μm</td>
</tr>
<tr>
<td>Sidewall width</td>
<td>10</td>
<td>μm</td>
</tr>
<tr>
<td>Bottom wafer thickness</td>
<td>500</td>
<td>μm</td>
</tr>
</tbody>
</table>
Fabricated CMUT Planar Array

SEM image of the planar array

The array has 40 x 40 CMUT cells in a footprint area of 1870 x 1870 \(\mu \text{m}^2 \)
AFM Dynamic Mode Operation

- An AFM technique creates a 3D topography of the sample's surface by scanning the surface using a sharp tip cantilever probe.
- In the Dynamic Mode, the cantilever is forced to vibrate at its resonance frequency using a piezo element.
- The vibration amplitude of the cantilever is detected using a laser and photodiode based detection system to use in a feedback loop.
- The output of this feedback loop corresponds to the local sample height.

![AFM Dynamic Mode Diagram](image-url)
Advantages of the Dynamic Mode

• The dynamic mode was chosen over the static mode due to the following reasons:

 1. Gentle interaction of the probe tip with the surface improves accuracy
 2. Minimized torsional forces between the probe and the sample, and
 3. By using the cantilever’s oscillation amplitude as the feedback parameter, the user is able to fine-tune the interaction between probe and sample between different regimes—such as attractive and repulsive ones—to control the tip–surface distance on an atomic scale

• Better Control
• Higher Accuracy
• Higher Resolution
Once the AFM measurement was done, the height data was processed following standard AFM data processing steps.
AFM Data for 3D Visualization

Pseudo-color view of the surface after processing

3-D height image in The Gwyddion™
The statistical roughness parameters following ISO 25178 have been determined using Gwyddion™

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS roughness, S_q</td>
<td>10.50</td>
<td>nm</td>
</tr>
<tr>
<td>Mean-square roughness, S_a</td>
<td>9.08</td>
<td>nm</td>
</tr>
<tr>
<td>Skew, S_{sk}</td>
<td>0.06925</td>
<td></td>
</tr>
<tr>
<td>Excess kurtosis</td>
<td>-1.185</td>
<td></td>
</tr>
<tr>
<td>Maximum peak height, S_p</td>
<td>19.24</td>
<td>nm</td>
</tr>
<tr>
<td>Maximum pit depth, S_y</td>
<td>19.01</td>
<td>nm</td>
</tr>
<tr>
<td>Maximum height, S_z</td>
<td>38.25</td>
<td>nm</td>
</tr>
<tr>
<td>Projected area</td>
<td>2025</td>
<td>μm²</td>
</tr>
<tr>
<td>Surface area</td>
<td>2026</td>
<td>μm²</td>
</tr>
<tr>
<td>Volume</td>
<td>38.50</td>
<td>μm³</td>
</tr>
</tbody>
</table>
Surface vs Line Data

• AFM data are usually collected as line scans along the x axis
• x-axis data are concatenated together to form a 2-D image
• Scanning speed in the x direction is considerably higher than the scanning speed in the y direction
• As a result, the x profiles are less affected by low frequency noise and thermal drift of the sample as compared to the y profile
• Standardized one dimensional roughness parameters are considered more accurate
Line Scan Along X direction

One dimensional roughness parameters for a scan line centered approximately at the middle of the CMUT diaphragm along the y-axis

Scan line

Roughness, texture, and waviness profile along the x-scan line
One Dimensional Roughness Parameters along the X Scan Line

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut-off</td>
<td>7.69</td>
<td>μm</td>
</tr>
<tr>
<td>Roughness average, R_a</td>
<td>3.09</td>
<td>nm</td>
</tr>
<tr>
<td>Root mean square roughness, R_q</td>
<td>4.87</td>
<td>nm</td>
</tr>
<tr>
<td>Maximum height of the roughness, R_t</td>
<td>34.58</td>
<td>nm</td>
</tr>
<tr>
<td>Maximum roughness valley depth, R_v</td>
<td>10.67</td>
<td>nm</td>
</tr>
<tr>
<td>Maximum roughness peak height, R_p</td>
<td>23.91</td>
<td>nm</td>
</tr>
<tr>
<td>Average maximum height of the roughness, R_{im}</td>
<td>17.92</td>
<td>nm</td>
</tr>
<tr>
<td>Average maximum roughness valley depth, R_{vm}</td>
<td>6.97</td>
<td>nm</td>
</tr>
<tr>
<td>Average maximum roughness peak height, R_{pm}</td>
<td>10.95</td>
<td>nm</td>
</tr>
<tr>
<td>Average maximum height of the profile, R_z</td>
<td>20.83</td>
<td>nm</td>
</tr>
<tr>
<td>Average maximum height of the roughness, R_{z-ISO}</td>
<td>17.92</td>
<td>nm</td>
</tr>
<tr>
<td>Waviness average, W_a</td>
<td>8.77</td>
<td>nm</td>
</tr>
<tr>
<td>Root mean square waviness, W_q</td>
<td>10.16</td>
<td>nm</td>
</tr>
</tbody>
</table>
Line Scan Along Y direction

One dimensional roughness parameters for a scan line centered approximately at the middle of the CMUT diaphragm along the x-axis

Scan line

Roughness, texture, and waviness profile along the x-scan line
Line Scan Along An Arbitrary Direction

Arbitrary direction scan

Waviness profile along the arbitrary scan line
High Frequency Filtering
with a Gaussian Filter

Roughness, texture, and waviness profile along the x-directional scan after applying a Gaussian filter

Scan line
Waviness Measurement After High Frequency Filtering

- The waviness average height is 8.85 nm
- Maximum height is 11.18 nm to 10.67 nm over this range
- Almost a flat surface

Waviness profile measurement over a length on filtered data 7.66 micrometers (two red markers)
3D Top and Bottom View

3D top and bottom views of the deflection profile after Gaussian filtering
Conclusions

- The presented dynamic mode AFM measurement and data analysis of a CMUT diaphragm appears to be a valuable method to evaluate the deflection profile of a CMUT diaphragm with a very high degree of accuracy.
- Main advantage of the proposed method is that the height data is measured directly with nanometer scale precision instead of inferring from a 2D projection of an optical image.
- Such deflection profiles can be used to determine the residual stress and other physical parameters of a CMUT diaphragm to aid in fine tuning of the process parameters to optimize CMUT diaphragm vibrational characteristics to obtain high quality images.
- Additionally, the dynamic mode enables to measure the deflection shape of insulating materials, thus enabling to measure the diaphragm shapes where the diaphragm has an insulating top surface.
- Overall, the dynamic mode AFM can provide high accuracy high resolution nanometer scale measurements to characterize CMUT surfaces.
Thank You for Your Support

• Natural Sciences and Engineering Research Council of Canada (NSERC)
• Nanosurf AG, Switzerland
• CMC Microsystems, Canada
• IntelliSense Software Corporation of Woburn, MA., USA
References

