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Photoreactors in general

Are used to

 cultivate photosynthetic active microorganisms
and cells

 to perform photocatalytic reactions

General problem:

 limited penetration depth of light
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Internally illuminated photoreactors

Wireless light emitters (WLE)

Internally illuminated photoreactors
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 Inductively supplied spherical light 
emitters (WLEs) which are floating 
in the reactor media

 The driving Coils at the outer 
circumference of the reactor are 
driven by a class-e power amplifier



Internally illuminated photoreactors

The next step:

 inclusion of sensors for measuring crucial parameters

 e.g. temperature, pH-value, oxygen and carbon dioxide 
concentrations, …

 wireless sensors to counteract the drawback of measuring the 
respective parameter only at one point in the reactor

 determining the position of the sensor leads to a spatial resolution of 
the measured parameter
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Communication

 Methods for underwater communication:
• Our choice:

Electromagnetic

(EM) data

transmission

Acoustic data

transmission

Optical data

transmission

• Problem: sensors are inside a with
(salt-) water filled Photoreactor 
(electrically conducting media) -> 
lossy media -> attenuation of 
electromagnetic waves

• Attenuation:
o increases with higher frequency

o increases with higher conductivity 𝜎 of 
the propagation media 
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The acoustic and the optical methods 

are not well suited for our aim:

 The optical method would not be feasible 

due to the many obstacles in the reactor; 

for example the WLEs. 

 The acoustic method is unsuitable due to 

the physical separation between 

transmitter and receiver by the reactor 

wall.



Communication

 Physical requirements for the communication layer:

• low frequencies

• based on the inductive principle since the relative magnetic 
permeability of water (and saltwater) is ≈ 1 (like air). 

 Our choice: inductive communication link with a carrier 
frequency of 298kHz -> only the quasi-static field 
component results relevant

• On-off keying is used as a modulation technique.
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Transmitter circuit 

 Bit generator to simulate the digital 
sensor data stream. This circuit 
generates a square signal where the 
high level represents the ‘1’ bit and 
the low lever the ‘0’ bit.

 On-off-keying: the square wave of 
the bit generator is used to switch 
the oscillator on and off.

 Transmitter: Hartley oscillator

Transmitter circuit
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Localization Theory

 For the localization task we use 
the magnetic dipole field 
equation to model the magnetic 
field of the transmitter coil

• Magnetic field strength in radial 𝐻ρ

and tangential 𝐻𝑡 component

𝐻ρ =
𝑁𝐼𝐴

2𝜋ρ3
cos 𝜍

𝐻𝑡 =
𝑁𝐼𝐴

4𝜋ρ3
sin 𝜍

Magnetic dipole field

 Measuring the magnetic field at well defined positions outside 
the reactor makes the calculation of the transmitter position
possible. 
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Localization Theory

 Coupling equation for the simplified 
aligned (see next slide) case: 

Ԧ𝑓𝒓𝒙 =
𝐶

𝜌3
𝑺 Ԧ𝑓𝒕𝒙

• 𝑺 =
1 0 0
0 −0.5 0
0 0 −0.5

• transmitter signal vector Ԧ𝑓𝒕𝒙

• receiver signal vector Ԧ𝑓𝒓𝒙
• 𝐶 … constant value depending on the coil properties

and the sensor gain

• 𝜌… distance between transmitter and receiver
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Coupling between aligned source and sensor:

Magnetic dipole field
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Localization Theory
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Coupling between aligned source and sensor:

 Alignment conditions:

Ԧ𝑒𝑥−𝑟𝑥 = Ԧ𝑒𝑥−𝑡𝑥

Ԧ𝑒𝑦−𝑟𝑥 || Ԧ𝑒𝑦−𝑡𝑥

Ԧ𝑒𝑧−𝑟𝑥 || Ԧ𝑒𝑧−𝑡𝑥
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Alignement conditions
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Localization Theory

Coupling between source and sensor:

 Coupling between transmitter and receiver (not aligned)

Ԧ𝑓𝒓𝒙 =
𝐶

ρ3
𝑻𝜶

−1 𝑻𝜷
−1 𝑺 𝑻𝜶𝑻𝜷 Ԧ𝑓𝒕𝒙

• 𝑻𝜶 … rotation matrix around the z-axis

• 𝑻𝜷 … rotation matrix around the y-axis
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Arrangement for a more general case



Localization Theory

 Two receivers for measuring the magnetic field at a defined positions.

 Solving the equation

𝑻𝜶
−1 𝑻𝜷

−1 𝑺 𝑻𝜶𝑻𝜷 Ԧ𝑓𝒕𝒙 − Ԧ𝑓𝒓𝒙 = 𝟎

with Ԧ𝑓𝒕𝒙 = (𝟎 𝟎 𝒂)𝑻 for the angles α and β (and for a) enables 
the calculation of a directional vector Ԧ𝑟 which points from the
measurement point to the transmitter position.

 The position is calculated by determining the point where the two 
directional vectors come closest (ideally the intersection).
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Our method
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Localization Hardware

 The magnetic field at a known position is measured with a  „3d-Coil“.

 Three coils are positioned orthogonally to each other for measuring 
the x- y- and z-component of the magnetic field of the transmitter.

3d-coil-receiver
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Receiver design
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Localization Hardware

 Coil as main receiver component.

 The coil signal is amplified with a resonant filter in order to amplify the 
receiver signal only at the transmitting frequency.
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Receiver design

Resonant filter
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Localization Hardware

 Bode magnitude plot of the resonant filter:
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Receiver design
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Localization Setup
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Our system

 With the measured magnetic field and based on the magnetic dipole equation a 

directional vector റ𝑟 is calculated for each receiver. This vector points from the 

receiver to the transmitter.

 The directional vector റ𝑟 is defined by the two angles α and β.

 By using two or more receivers the transmitter position is calculated by finding 

the point were the direction vectors comes closest, ideally the intersection.
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Definition of the directional vector റ𝑟



Localization Setup
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Receiver positions:

Receiver arrangement
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 The setup used for the first

localization measurements is 

entirely made out of plastic 

materials in order to not influence 

the magnetic field.



Localization Measurements
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Measurement points:

 Five measuring points at 
seven different heights in 
our region of interest.

 The x and y coordinates of 
the individual points are the 
same at all heights.

Measurement pattern (unit: cm)
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Results

 Real position vs. measured position (25cm height)
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Results

 Mean values of the relative errors of all three coordinates at 
different heights
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For low as well as for high z-coordinates, the distance to one 
receiver increases and, therefore, the accuracy decreases.



Simulation results

 Accuracy improvement by using more than two receivers

• Mean value of the magnitude of the deviation vectors between the exact

positions and calculated positions with added noise.
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 signal amplitude variation:
• random values in the range between 0 

and 5% of the calculated exact 
amplitude

 overlap of white noise
• random values in the range between 0 

and 50% of the signal amplitude

 power supply magnetic field 
overlap
• random values in the range between 0 

and 50% of the signal amplitude



Thank you for your attention!
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