

Using RESTFul API and SHACL to Invoke Executable Semantics
In the Context of Core Software Ontology

Author：Xianming Zhang

Presenter: Xianming Zhang ,forzxm@163.com

Aviation Industry Development and Research Center of China

0000

 Xianming Zhang is an engineer and researcher of Aviation Industry

Development and Research Center of China located in Beijing, China.

He received his Degree Master in Information Science from China

Aviation Establishment, Degree Bachelor in Computer Science from

Tianjin University .

Research Interests

• Applied and Domain Ontology

• Sematic Web

• Semantic Technology

• Knowledge Engineering

content

• Part1 Purpose of This Paper

• Part2 Introduction to Framework: Core Software Ontology

• Part3 Introduction to Framework: SHACL and RESTFul API

• Part4 A Use Case as the Motivation

• Part5 Applying the Framework to the Use Case

Part1 Purpose of This Paper(1)

• Core Software Ontology (CSO) based on the well-known DOLCE Ontology

is designed to describe computation domain, including semantic aspects

of computing objects(software ,data and their realizations) and

execution ,which constitute the executable semantics.

• The initial hope of building software is to launch a computing/execution

and return a value, and it is clear that current state of CSO fails to achieve

that as the execution situation still cannot be used to invoke the included

computing objects.

Part1 Purpose of This Paper(2)

• A typical ontology is based on RDF, and the RDF provides a format basis in

which URLs are encapsulated to represent multiple entities. These URLs

pointing to static contents can be simply accessed.

• RESTFul APIs often focus on computing, which means that their URLs

should not be simply accessed

• It is feasible that fitting RESTFul APIs as URLs into the context of CSO, but

executable semantics including these RESTFul APIs is not to be invoked to

launch computing in the context of CSO.

Part1 Purpose of This Paper(3)

• Shapes Constraint Language (SHACL) provides SHACL-JS engine that can

access and invoke JavaScript code on web by its URL. From this

perspective, SHACL can help to invoke executable semantic in the context

of CSO.

• But JavaScript apparently cannot access to databases and cannot support

too complex algorithms such as Matrix or Calculus needed by engineering

computing.

Part1 Purpose of This Paper(4)

The purpose of this paper is to present a framework.

• a. Fitting RESTFul API into the context of CSO

• b. Breaking the hurdle between SHACL-JS engine and REST API to enable

former to invoke latter to get result,

• c. With a , b and SHACL-SPARQL Construct, REST API can fit into the

context of CSO very well and the constructed executable semantics can be

invoked for desired purpose.

Part1 Purpose of This Paper(5)

Part2 Introduction to Framework: Core

Software Ontology(1)

• This paper puts forward a framework working as basis for

invoking executable semantics, in which following ones are

cooperating with each other to achieve the goal: Core

Software Ontology (CSO), Shapes Constraint Language (SHACL)

and RESTFul API.

• A lightweight, easy-to-apply foundational ontology known as

DOLCE+DnS Ultralite (DUL)is used as basis for CSO.

Part2 Introduction to Framework: Core
Software Ontology(2)

Some concepts from DUL Ontology for this paper are introduced.

• DUL:InformationObject

• DUL: InformationRealization

• DUL: Activity

• DUL: Task

• DUL:Role

• DUL:Plan

• DUL:Situation

• DUL:isRoleOf

• DUL:satisfies

• DUL:executesTask

Part2 Introduction to Framework: Core
Software Ontology(3)

Some concepts of CSO.

• CSO:ComputationalObject

• CSO:Data

• CSO:Software

• CSO: ComputationalActivity

• CSO:ComputationalTask

• CSO:Input

• CSO:Output

• CSO:inputFor

• CSO:outputFor

Part2 Introduction to Framework: Core
Software Ontology(4)

From DUL Ontology to CSO

CSO DUL Ontology

CSO:ComputationalObject DUL: InformationRealization

CSO:Data DUL:InformationObject

CSO:Software DUL:InformationObject

CSO:ComputationalActivity DUL: Activity

CSO:ComputationalTask DUL: Task

CSO:Input, CSO:Output DUL:Role

CSO:inputFor,CSO:outputFor DUL:isRoleOf

Part2 Introduction to Framework: Core
Software Ontology(5)

CSO:executes is also introduced to formalize that a CSO:Software is used to

complete a CSO:ComputationalTask. The figure below shows the definition(D1)

Part 3 Introduction to Framework: SHACL and
RESTFul API(1)

• The Shapes Constraint Language (SHACL) is a W3C recommendation.

• SHACL-SPARQL is one extension mechanism for SHACL to express

constraints in SPARQL, allowing shape definitions to point at executable

SPARQL queries to perform the validations .

• SHACL-JS engine is an advanced extension mechanism for SHACL, allowing

users to express SHACL constraints and the advanced features of custom

targets, functions and rules with the help of JavaScript.

Part 3 Introduction to Framework: SHACL and
RESTFul API(2)

• A RESTFul API is an application program interface (API) that uses existing

HTTP methodologies defined by the RFC 2616 protocol, which allows two

software programs to communicate with each other.

Part 3 Introduction to Framework: SHACL and
RESTFul API(3)

A computer with SHACL-JS is called as client and a computer with RESTFul API

running on it is called as Web Server.

• A user operating the client submits data in RDF that contain URL of a

RESTFul API and function name into SHACL-JS engine, SHACL-JS engine

sends the URL to Web Server after parsing.

• Web Server runs the received URL and then gets the returned value.

• Web Server encapsulates the value as the string in JavaScript code

format ,and then feedbacks to the client.

• The client simply runs the string ,and returns the value to user.

Part 3 Introduction to Framework: SHACL and RESTFul API(4)

Part4 A Use Case as the Motivation(1)

• This use case is to computing lift coefficient of airfoil; the lift-coefficient

formula is as follows.

 Lift-coefficient=f(attack-angle)

• .

Part4 A Use Case as the Motivation(2)

• There is no explicit formula (or calculation script) to accurately calculate

lift coefficient from attack angle. Typically, lift-coefficient is a list of data

through a limited number of experiments that record the data under

different attack angles.

• A dedicated RESTFul API can be developed and deployed on the web

server. The RESTFul API implements numerical approximation, such as

least square and interpolating to allow users to query for any given attack-

angle.

Part5 Applying the Framework to the Use Case (1)

• The framework is applied to the use case, and we can freely

get returned value of lift coefficient for a given attack angle. In

this paper, a temporary ontology is created in the context of

CSO for this use case, known as S-C Ontology.

Part5 Applying the Framework to the Use Case (2)

S-C Ontology(1)

A few of ground entities can be extracted from this use case and be aligned

to predefined concepts in CSO.

S-C Ontology CSO memo

s-c: attack-angle CSO:Data

s-c:lift-coefficient CSO:Data

s-c:computation1 CSO:Software

s-c:computation1
-computational-object

CSO: ComputationalObject DUL:realizes s-c:computation1
and rdfs:seeAlso
“http://server:8080/lift-
coefficient?attack-
angle={value}”

Part5 Applying the Framework to the Use Case (3)

 S-C Ontology CSO/DUL Ontology memo

s-c:activity1 CSO:ComputationalA
ctivity

The execution of a certain
CSO:ComputationalObject/CSO:Sof
tware

s-c:run DUL:hasParticipan Linking a CSO:
ComputationalActivity with a CSO:
ComputationalObject ,which
means giving rise to execution of
software.

s-c:in/ s-c:out DUL:hasParticipant Linking a
CSO:ComputationalActivity
with a CSO:Data as input/output
for computing.

S-C Ontology(2)

Part5 Applying the Framework to the Use Case (4)

S-C Ontology(3)
Modeling Plan and Situation in S-C ontology

S-C Ontology CSO/DUL Ontology memo

s-c:computation-plan DUL:Plan the design of computing
configuration

s-c:input-attack-angle CSO:Input

s-c:output-lift-angle CSO:Output

s-c:task1 CSO:ComputationalTask

s-c:computation-situation DUL:Situation The computing
configuration

Part5 Applying the Framework to the Use Case (5)

S-C Ontology(4)

 The triples in s-c:computation-plan

s-c:computation-plan

s-c:input-attack-angle CSO:inputFor s-c:task1
s-c:output-lift-angle CSO:inputFor s-c:task1

Part5 Applying the Framework to the Use Case (6)

S-C Ontology(5)

 The triples in s-c:computation-situation

s-c:computation-situation

s-c:attack-angle s-c:in s-c:activity1
s-c:lift-coefficient s-c:out s-c:activity1
s-c:computation1-computational-object s-c:run s-c:activity1

Part5 Applying the Framework to the Use Case (7)

S-C Ontology(6)

 The associations between s-c:computation-plan and s-c:computation-

situation.

Part5 Applying the Framework to the Use Case (8)

To Inference Situation from Plan(1)

In this paper ,the CONSTRUCT clause of SPARQL Update is used to construct

s-c:computation-situation from s-c:computation-plan with associated

CSO:Data and CSO:Software.

Part5 Applying the Framework to the Use Case (9)

To Inference Situation from Plan(2)

• construct {
• ?software_computational_object s-c:run s-c:activity1.
• ?inData s-c:in s-c:activity1.
• ?inData DUL:hasDataValue ?value.
• ?outData s-c:out s-c:activity1.
• ?software_computational_object rdfs:seeAlso ?url.
• }
• where {
• GRAPH <http://semantic-computing/#computation-plan>{
• ?inRole cso:input-for s-c:task1.
• ?outRole cso:output-for s-c:task1.
• }
• GRAPH <http://semantic-computing/#software-plan>{
• ?software cso:executes s-c:task1.
• ?inData DUL:hasRole ?inRole.
• ?outData DUL:hasRole ?outRole.}
• GRAPH <http://semantic-computing/#software-data>{
• ?software_computational_object DUL:realizes ?software.
• ?software_computational_object rdfs:seeAlso ?url.
• ?inData DUL:hasDataValue ?value. }
• }

Part5 Applying the Framework to the Use Case (10)

• To Inference Situation from Plan(3)

There are several graphs in this statement: <http://semantic-

computing/#computation-plan> contains triples of s-c:computation-plan;

<http://semantic-computing/#software-plan> contains triples representing

associations between CSO:Data/CSO:Software and entities in s-c:computation-plan;

<http://semantic-computing/#software-data> contains triples representing

associations among CSO:Data/CSO:software. The constructed result is below, it is

noted the s-c:computation1-computational-object(an instance of CSO:

ComputationalObject) links a RESTFul API via rdfs:seeAlso .

Part5 Applying the Framework to the Use Case (11)

To Inference Situation from Plan(4)

 The constructed situation :

s-c:computation1-computational-object s-c:run s-c:activity1.

s-c:attack-angle s-c:in s-c:activity1.

s-c:attack-angle DUL:hasDataValue 13.0.

s-c:lift-coefficient s-c:out s-c:activity1.

s-c:computation1-computational-object rdfs:seeAlso <http://ip/lift-

coefficient?attack-angle=>.

Part5 Applying the Framework to the Use Case (12)

Using SHACL to Invoke Executable Semantics(1)

• The s-c: computation-situation forms executable semantics, and now its

goal is to create a triple of “ s-c:lift-coefficient DUL:hasDataValue ?value”,

• Using the triples of s-c:computation-situation to create a model named

as Shape-Function, triples of which meet standard of SHACL-JS to form a

function that will be further used to invoke RESTFul API.

Part5 Applying the Framework to the Use Case (13)

Using SHACL to Invoke Executable Semantics(2)
The SPARQL Construct statement to use

• prefix sh: <http://www.w3.org/ns/shacl#>
• construct {
• s-c:dynamicFunc sh:jsFunctionName "dynamicFunc".
• s-c:dynamicFunc sh:jsLibrary <http://jsLibrary/temp>.
• s-c:dynamicFunc sh:returnType xsd:double.
• s-c:dynamicFunc sh:parameter <http://parameter/temp>.
• s-c:dynamicFunc rdf:type sh:JSFunction.
• <http://parameter/temp> sh:datatype xsd:double.
• <http://parameter/temp> sh:path s-c:number.
• <http://jsLibrary/temp> sh:jsLibraryURL ?dynamicFuncURL.
• }
• where{
• ?software_computational_object s-c:run s-c:activity1.
• ?inData s-c:in s-c:activity1.
• ?inData DUL:hasDataValue ?value.
• ?software_computational_object rdfs:seeAlso ?url.
• BIND(('http://IP/RESTTemplate/access?url='+STR(?url)+
• '?value='+STR(?value)) as ?dynamicFuncURL).
•
• }

Part5 Applying the Framework to the Use Case (14)

Using SHACL to Invoke Executable Semantics(3)

The constructed model named as Shape-Function, also can be regarded as a

shape according to SHACL. It must be noted that there are two RESTFul APIs

should be discussed here, they are 'http://ip/RESTTemplate/access?url=” and

“http://ip/lift-coefficient?attack-angle=”, the function of former is to invoke

the latter and encapsulate the return value in JavaScript format with

“dynamicFunc” as function name, below is the concise code.

Part5 Applying the Framework to the Use Case (15)

s-c:dynamicFunc sh:jsFunctionName "dynamicFunc".
s-c:dynamicFunc sh:jsLibrary <http://jsLibrary/temp>.
s-c:dynamicFunc sh:returnType xsd:double.
s-c:dynamicFunc sh:parameter <http://parameter/temp>.
s-c:dynamicFunc rdf:type sh:JSFunction.
<http://parameter/temp> sh:datatype xsd:double.
<http://parameter/temp> sh:path s-c:number.

<http://jsLibrary/temp>
sh:jsLibraryURL 'http://ip/RESTTemplate/access?url=http://ip/lift-
coefficient?attack-angle=13'.

Using SHACL to Invoke Executable Semantics(4)

Part5 Applying the Framework to the Use Case (16)

Using SHACL to Invoke Executable Semantics(5)

In addition to the Shape-Function complied with SHACL-JS , another model

named as Shape –Construct complied with SHACL-SPARQL is needed to work

with the Model-Function the achieve the goal.

Part5 Applying the Framework to the Use Case (17)

Using SHACL to Invoke Executable Semantics(6)

@prefix s-c:<http://semantic-computing/#>.
s-c:rule1
 a rdfs:Class, sh:NodeShape ;
 sh:targetNode s-c:activity1 ;
 rdfs:label "to run sc:activity1" ;
 sh:rule[
 a sh:SPARQLRule ;
 sh:construct """
 CONSTRUCT {
 ?outdata DUL:hasDataValue ?value.
 }
 WHERE {
 ?outdata s-c:out ?this.
 BIND(<http://semantic-computing/#dynamicFunc>()

AS ?value).
 }
 """ ;
] .

Part5 Applying the Framework to the Use Case (18)

Using SHACL to Invoke Executable Semantics(7)
The process and method of creating the new triple

Thank you !!!

