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Inheritance in Real-World Oetober 4 2020

 Natural concept in real-world Parents

« Key to evolution (passing properties to next generations)
« Taxonomies (common properties of species)
 Allows us to form abstractions and relate them

« Everyone understands how it works
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Inheritance in Software Implementation oetaber & 2000
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class AlivePerson(Person, Insurable):

* In OOP intended to reflect real-world inheritance

def init (self, name, birthdate,
Person. init (self, name, birt

« Often abused or mis-used purely for re-use

* DRY principle but with combinatorial effects Insurable. _init_(self, condit]
» ,Composition over inheritance” aproperty

def is_alive(self):
 Various implementations and behavior in return True

different languages
* Single inheritance, multiple inheritance, prototyping, interfaces

« Hard to understand (and use correctly)
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« Python 3 = language suitable for prototyping

A
* Allows to re-define behaviour of almost everything

* Method Resolution Order ﬁ K

« Concept of metaclasses

 Easy transition to other OOP languages in

B C
,production-ready” stacks such as Java K ﬂ

D
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« We described patterns how to implement inheritance based on related work:

« Union pattern
« Composition pattern

* Generalization Set pattern
 Evaluated only on the conceptual-level

» Next goal was to investigate how to use them in implementation:
« Elimination of combinatorial effects
 Ease of implementation (overhead)
« Flexibility for various use cases
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Inheritance Implementation Patterns

« Traditional Inheritance (multiple with MRO)

 Order of subclassing matters, but the order is usually not modelled
« Changing a class affects all the (direct and indirect) subclasses

* Object can be instance only of a single class

« Imminent combinatorial effect (leading to ,combinatorial explosion®)

class AlivePerson(Person, Insurable): class Woman(Person):
def init (self, name, birthdate, location, condition): gproperty
Person. init (self, name, birthdate, location) def greeting(self):

Insurable. init (self, condition)

October 4, 2020
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return f'Mrs. {self.name} "= S
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Inheritance Implementation Patterns
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class Person:

« Union Pattern
def init (self, name, birthdate, location, condition):

« Merges whole hierarchy into a single class self.location = location

self.condition = condition
self.birthdate = birthdate
self.name = name

» The ,order” is captured while merging

# optional-subclass attributes

« Changes contained in the class self .employment = None
self.deathdate = None
* Discriminators to toggle subclasses # discriminators

self. d man_woman = None
self. d alive deceased = None
self. d _employee = None

« To share behavior, delegation can be used

Fr e 5 = b o a -
# superclasses with behaviour

« Can be generated but causes issues when se1f._x_living being = Livingseing
union classes should be split or merged
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class Delegation:

Composition Pattern

def init (self, p_name, a _name):

Replaces inheritance with delegation self.p_name = p_name

self.a _name = a_name

Easy to generate from a model (may need order)  er et (ccir, instance, ouner):

p = getattr(instance, f'_parent_{self.p name}"')

Additional rules for generalization sets must be a = getattr(p, self.a name) if p else None
return a(instance) if callable(a) else a
handled using custom code

def set  (self, instance, value):
p = getattr(instance, f'_p_{self.p_name}")
setattr(p, self.a _name, value)

class Person:

condition = Delegation('insurable', 'condition')
age = Delegation('living_being', 'age')

def init (self, *, name, **kwargs):
self. p living being = LivingBeing( ¢ person=self, *xkwargs)
self. _c_man = None
self._c_woman = None Y N
self.name = name
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* Generalization Set Pattern

« Strives to include GS with composition

 For a set of classes, special GS class may be added

* It holds additional GS constraints and maintains integrity
 Special treatment of overlapping generalization sets

« More complex navigation for delegation
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Traditional N + 2N none none initialization, order of superclasses,
uncontrolled change propagation

Traditional N + 2N Init bases shared initialization shared attributes across hierarchy, order

+init_bases function of superclasses, uncontrolled change
propagation

Union 2 Delegation class shared class (merged) Separation of Concerns violated,
maintainability, discriminators

Composition N Delegation class shared initialization, manual handling of GS constraints, added

delegation complexity (for humans)
GS N+1 Delegation class, shared initialization, added complexity (for humans)
GS helpers delegation

*) per single hierarchy of N classes, worst case (all combinations needed) A
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« We revisited and prototyped the inheritance implementation patterns
« Focused on generation from model and maintainability
 Avoid order-related combinatorial effects by solving it upon transformation

« Other change-related combinatorial effect are partially avoided by delegation

» Future work:
 Prototype and test expansion for inheritance with production-ready stack

* Inheritance in Ul/UX (i.e., how to create instances for hierarchy)
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