
Evolvability Analysis of Multiple Inheritance

and Method Resolution Order in Python

Marek Suchánek (FIT CTU in Prague, FBE UA)
marek.suchanek@fit.cvut.cz

Robert Pergl (FIT CTU in Prague)

The Twelfth International Conference on Pervasive Patterns and Applications

PATTERNS 2020

October 25, 2020 to October 29, 2020 - Nice, France



Introduction and Outline

• Speaker: Marek Suchánek

• PhD student at FIT CTU in Prague and FBE University of Antwerp (joint degree)

• Member of CCMi (Centre for Conceptual Modelling and Implementation)

• Presentation

1. Concept of Inheritance

2. Inheritance in Python 3

3. Inheritance Implementation Patterns

4. Conclusions and future work

October 4, 2020

2 / 13

Evolvability of Inheritance



Inheritance in Real-World

• Natural concept in real-world

• Key to evolution (passing properties to next generations)

• Taxonomies (common properties of species)

• Allows us to form abstractions and relate them

• Everyone understands how it works

October 4, 2020

3 / 13

Evolvability of Inheritance

codestall.wordpress.com

https://www.google.com/url?sa=i&url=https%3A%2F%2Fcodestall.wordpress.com%2F2017%2F09%2F20%2Finheritance-in-java%2F&psig=AOvVaw2byiHm-HUnGwgynlFxlnBO&ust=1601914738923000&source=images&cd=vfe&ved=2ahUKEwjg8IfJq5vsAhVB2KQKHdWKBLkQr4kDegUIARCBAQ


Inheritance in Conceptual Models

• Conceptual models are used to describe reality

• … including inheritance as a key principle

• Different languages provide different/various ways

• OntoUML

• UML (class diagram)

• OWL (owl:subclass)

• ER (IS-A hierarchies)

• Subtyping, subclassing, etc.

• May be „detached“ from reality, harder to understand

October 4, 2020

4 / 13

Evolvability of Inheritance



Inheritance in Software Implementation

• In OOP intended to reflect real-world inheritance

• Often abused or mis-used purely for re-use

• DRY principle but with combinatorial effects

• „Composition over inheritance“

• Various implementations and behavior in 

different languages

• Single inheritance, multiple inheritance, prototyping, interfaces

• Hard to understand (and use correctly)

October 4, 2020

5 / 13

Evolvability of Inheritance



Mutliple Inheritance in Python 3

• Python 3 = language suitable for prototyping

• Allows to re-define behaviour of almost everything

• Method Resolution Order

• Concept of metaclasses

• Easy transition to other OOP languages in

„production-ready“ stacks such as Java

October 4, 2020

6 / 13

Evolvability of Inheritance



Inheritance Implementation Patterns

• We described patterns how to implement inheritance based on related work:

• Union pattern

• Composition pattern

• Generalization Set pattern

• Evaluated only on the conceptual-level

• Next goal was to investigate how to use them in implementation:

• Elimination of combinatorial effects

• Ease of implementation (overhead)

• Flexibility for various use cases

October 4, 2020

7 / 13

Evolvability of Inheritance



Inheritance Implementation Patterns

• Traditional Inheritance (multiple with MRO)

• Order of subclassing matters, but the order is usually not modelled

• Changing a class affects all the (direct and indirect) subclasses

• Object can be instance only of a single class

• Imminent combinatorial effect (leading to „combinatorial explosion“)

October 4, 2020

8 / 13

Evolvability of Inheritance



Inheritance Implementation Patterns

• Union Pattern

• Merges whole hierarchy into a single class

• The „order“ is captured while merging

• Changes contained in the class

• Discriminators to toggle subclasses

• To share behavior, delegation can be used

• Can be generated but causes issues when

union classes should be split or merged

October 4, 2020

9 / 13

Evolvability of Inheritance



Inheritance Implementation Patterns

• Composition Pattern

• Replaces inheritance with delegation

• Easy to generate from a model (may need order)

• Additional rules for generalization sets must be

handled using custom code

October 4, 2020

10 / 13

Evolvability of Inheritance



Inheritance Implementation Patterns

• Generalization Set Pattern

• Strives to include GS with composition

• For a set of classes, special GS class may be added

• It holds additional GS constraints and maintains integrity

• Special treatment of overlapping generalization sets

• More complex navigation for delegation

October 4, 2020

11 / 13

Evolvability of Inheritance



Comparison

Implementation Classes* Extra constructs CE-handling Issue(s)

Traditional 𝑁 + 2𝑁 none none initialization, order of superclasses, 
uncontrolled change propagation

Traditional
+ init_bases

𝑁 + 2𝑁 Init_bases
function

shared initialization shared attributes across hierarchy, order 
of superclasses, uncontrolled change 
propagation

Union 2 Delegation class shared class (merged) Separation of Concerns violated, 
maintainability, discriminators

Composition 𝑁 Delegation class shared initialization,
delegation

manual handling of GS constraints, added 
complexity (for humans) 

GS 𝑁 + 1 Delegation class, 
GS helpers

shared initialization,
delegation

added complexity (for humans)

October 4, 2020

Evolvability of Inheritance

12 / 13

*) per single hierarchy of 𝑁 classes, worst case (all combinations needed)



Conclusions and Future Work

• We revisited and prototyped the inheritance implementation patterns

• Focused on generation from model and maintainability

• Avoid order-related combinatorial effects by solving it upon transformation

• Other change-related combinatorial effect are partially avoided by delegation

• Future work:

• Prototype and test expansion for inheritance with production-ready stack

• Inheritance in UI/UX (i.e., how to create instances for hierarchy)

October 4, 2020

13 / 13

Evolvability of Inheritance



Questions & Discussion


