Evolvability Analysis of Multiple Inheritance
and Method Resolution Order in Python

The Twelfth International Conference on Pervasive Patterns and Applications
PATTERNS 2020
October 25, 2020 to October 29, 2020 - Nice, France

II&A \ ‘

VAR N
Y"{ 5 ;\E‘a
- }/
Marek Suchanek (FIT CTU in Prague, FBE UA) o M cncuiry University
marek.suchanek@fit.cvut.cz '.; /‘% TRGHF et v ‘ + of Antwein
. ' CTU IN PRAGUE '

Robert Pergl (FIT CTU in Prague) NS

Evolvability of Inheritance

Introduction and Outline

October 4, 2020
2/13

« Speaker: Marek Suchanek
« PhD student at FIT CTU in Prague and FBE University of Antwerp (joint degree)

« Member of CCMi (Centre for Conceptual Modelling and Implementation)

* Presentation
1. Concept of Inheritance
2. Inheritance in Python 3
3. Inheritance Implementation Patterns

4. Conclusions and future work

Evolvability of Inheritance

Inheritance in Real-World Oetober 4 2020

 Natural concept in real-world Parents

« Key to evolution (passing properties to next generations)
« Taxonomies (common properties of species)
 Allows us to form abstractions and relate them

« Everyone understands how it works

‘d sjusied

s »

https://www.google.com/url?sa=i&url=https%3A%2F%2Fcodestall.wordpress.com%2F2017%2F09%2F20%2Finheritance-in-java%2F&psig=AOvVaw2byiHm-HUnGwgynlFxlnBO&ust=1601914738923000&source=images&cd=vfe&ved=2ahUKEwjg8IfJq5vsAhVB2KQKHdWKBLkQr4kDegUIARCBAQ

Evolvability of Inheritance

Inheritance in Conceptual Models

October 4, 2020

4/13
Locatable
« Conceptual models are used to describe reality locaten
« ... including inheritance as a key principle i
o y f‘;surab:'}e Livfngngng
- condition - birthdate
« Different languages provide different/various ways -t "ag‘aT R
T T T T|T T~~~ - -I-I--I-I--IIIZIZI|marek: Person
* OntOUML «kind» D/ «mgﬂ» A///i :
« UML (class diagram) ,jm — .
:Ire:{i?\ «subkind» : :
« OWL (owl:subclass) {disj:m,} : (5| oesing N
complete | :
 ER (IS-A hierarchies) |
, , e |
» Subtyping, subclassing, etc. “TeAlve - deathiae e
& ,,ﬂ'”'“ﬂ,,ﬂfj
« May be ,detached” from reality, harder to understand T
«role» 4--7 «relator»
Employee 1F.»miiiloyed iq__* -I'E):gl;;:‘ment j \\

Evolvability of Inheritance

Inheritance in Software Implementation oetaber & 2000

5/13

class AlivePerson(Person, Insurable):

* In OOP intended to reflect real-world inheritance

def init (self, name, birthdate,
Person. init (self, name, birt

« Often abused or mis-used purely for re-use

* DRY principle but with combinatorial effects Insurable. _init_(self, condit]
» ,Composition over inheritance” aproperty

def is_alive(self):
 Various implementations and behavior in return True

different languages
* Single inheritance, multiple inheritance, prototyping, interfaces

« Hard to understand (and use correctly)

Evolvability of Inheritance

Mutliple Inheritance in Python 3 Otober 4 2020

6/13

« Python 3 = language suitable for prototyping

A
* Allows to re-define behaviour of almost everything

* Method Resolution Order ﬁ K

« Concept of metaclasses

 Easy transition to other OOP languages in

B C
,production-ready” stacks such as Java K ﬂ

D

Evolvability of Inheritance

Inheritance Implementation Patterns october 4 2020

7/13

« We described patterns how to implement inheritance based on related work:

« Union pattern
« Composition pattern

* Generalization Set pattern
 Evaluated only on the conceptual-level

» Next goal was to investigate how to use them in implementation:
« Elimination of combinatorial effects
 Ease of implementation (overhead)
« Flexibility for various use cases

Evolvability of Inheritance

Inheritance Implementation Patterns

« Traditional Inheritance (multiple with MRO)

 Order of subclassing matters, but the order is usually not modelled
« Changing a class affects all the (direct and indirect) subclasses

* Object can be instance only of a single class

« Imminent combinatorial effect (leading to ,combinatorial explosion®)

class AlivePerson(Person, Insurable): class Woman(Person):
def init (self, name, birthdate, location, condition): gproperty
Person. init (self, name, birthdate, location) def greeting(self):

Insurable. init (self, condition)

October 4, 2020
8/13

return f'Mrs. {self.name} "= S

Evolvability of Inheritance

Inheritance Implementation Patterns

October 4, 2020
9/13

class Person:

« Union Pattern
def init (self, name, birthdate, location, condition):

« Merges whole hierarchy into a single class self.location = location

self.condition = condition
self.birthdate = birthdate
self.name = name

» The ,order” is captured while merging

optional-subclass attributes

« Changes contained in the class self .employment = None
self.deathdate = None
* Discriminators to toggle subclasses # discriminators

self. d man_woman = None
self. d alive deceased = None
self. d _employee = None

« To share behavior, delegation can be used

Fr e 5 = b o a -
superclasses with behaviour

« Can be generated but causes issues when se1f._x_living being = Livingseing
union classes should be split or merged

Evolvability of Inheritance

Inheritance Implementation Patterns october 4 2020

10/13

class Delegation:

Composition Pattern

def init (self, p_name, a _name):

Replaces inheritance with delegation self.p_name = p_name

self.a _name = a_name

Easy to generate from a model (may need order) er et (ccir, instance, ouner):

p = getattr(instance, f'_parent_{self.p name}"')

Additional rules for generalization sets must be a = getattr(p, self.a name) if p else None
return a(instance) if callable(a) else a
handled using custom code

def set (self, instance, value):
p = getattr(instance, f'_p_{self.p_name}")
setattr(p, self.a _name, value)

class Person:

condition = Delegation('insurable', 'condition')
age = Delegation('living_being', 'age')

def init (self, *, name, **kwargs):
self. p living being = LivingBeing(¢ person=self, *xkwargs)
self. _c_man = None
self._c_woman = None Y N
self.name = name

Evolvability of Inheritance

Inheritance Implementation Patterns october 4 2020

11/13

* Generalization Set Pattern

« Strives to include GS with composition

 For a set of classes, special GS class may be added

* It holds additional GS constraints and maintains integrity
 Special treatment of overlapping generalization sets

« More complex navigation for delegation

Evolvability of Inheritance

Comparison October 4, 2020

12/13

Traditional N + 2N none none initialization, order of superclasses,
uncontrolled change propagation

Traditional N + 2N Init bases shared initialization shared attributes across hierarchy, order

+init_bases function of superclasses, uncontrolled change
propagation

Union 2 Delegation class shared class (merged) Separation of Concerns violated,
maintainability, discriminators

Composition N Delegation class shared initialization, manual handling of GS constraints, added

delegation complexity (for humans)
GS N+1 Delegation class, shared initialization, added complexity (for humans)
GS helpers delegation

*) per single hierarchy of N classes, worst case (all combinations needed) A

Evolvability of Inheritance

Conclusions and Future Work octoner 4 2020

13/13

« We revisited and prototyped the inheritance implementation patterns
« Focused on generation from model and maintainability
 Avoid order-related combinatorial effects by solving it upon transformation

« Other change-related combinatorial effect are partially avoided by delegation

» Future work:
 Prototype and test expansion for inheritance with production-ready stack

* Inheritance in Ul/UX (i.e., how to create instances for hierarchy)

Questions & Discussion

