Efficiently Detecting Disguised Web Spambots (with Mismatches)

Authors:

Hayam Alamro \& Costas S. Iliopoulos
Presenter: (Hayam Alamro)

- Department of Informatics, King's College London, UK
- Department of Information Systems, Princess Nourah bint Abdulrahman University, Riyadh, KSA.
-(hayam.alamro@kcl.ac.uk)

Short resume of the presenter:

- Hayam Alamro is a Ph.D. student in Computer Science (Algorithms \& Data analysis Research Group) in the Department of Informatics at King's College London.
- Hayam's research focuses on the analysis and advanced design of string algorithms, approximate pattern matching, Cybersecurity, and data privacy.
- Hayam received her M.Sc. and her B.Sc. (with second class Honour) in Computer Science and Information Systems from King Saud University, Riyadh, Kingdom of Saudi Arabia.
- Before starting her Ph.D. in the UK, Hayam was working as a Lecturer in Computer Science and Information Systems College in Princess Nora University, Riyadh, Kingdom of Saudi Arabia. Hayam also has an experience working as a Computer Assistance in the Ministry of Planning, Interest of Public Statistics, Riyadh, Kingdom of Saudi Arabia.

Outline

- Introduction
- Our contributions
- Background
\square Disguised Actions Definition
\square Problems Definition
\square Disguised Actions with K Mismatches
\square Illustration by Example
- Conclusion

Introduction

- A spambot is a computer program designed to do repetitive actions on websites, servers or social media communities.

https://images.app.goo.gl/a5Yreu3X7MSCHmvU7

Activities

- Carrying out certain attacks on websites/ servers.
- Involving irrelevant links to increase a website ranking in search engine results.
- Using web crawlers for planting unsolicited material.
- Collecting email addresses from different sources (phishing emails).

Introduction

Existing spam detection techniques

- Content-based : Inject repetitive keywords in meta tags to promote a website in search engines.
- Link-based : Add links to a web page to increase its ranking score in search engines.
- Supervised machine learning: to identify the source of spambot, rather than detecting the spambot.

Nowdays: The spammers try to manipulate spambots' actions behaviour to appear as it were coming from a legitimate user to bypass the existing spam-filter tools

Introduction

More relevant to our work

- String pattern matching-based techniques (Hayati et al. and Ghanaei et al.), But:
- They are inapplicable because they do not take into account temporal information of neither the sequence (i.e., the user log) nor the pattern (i.e., the spambot actions).
> P. Hayati, V. Potdar, A. Talevski, and W. Smyth, "Rule-based on-the-fly web spambot detection using action strings," in CEAS, 2010.
$>$ V. Ghanaei, C. S. Iliopoulos, and S. P. Pissis, "Detection of web spambot in the presence of decoy actions," in IEEE International Conference on Big Data and Cloud Computing, 2014, pp. 277-279.

Our Contributions

1. We introduce an efficient algorithm that can detect one or more sequences of indeterminate (non solid) actions in text T in linear time.
\rightarrow Our algorithm can compute all occurrences of indeterminate sequence \tilde{S} in text T in $O(m+\log n+o c c)$, where:
m is the $\widetilde{|S|}, n$ is the $|T|$, and occ is the number of the occurrences of the sequence \tilde{S} in T.

Our Contributions

2. We propose an efficient algorithm for solving ($\boldsymbol{f}, \boldsymbol{c}, \boldsymbol{k}, \boldsymbol{W}$)-Disguised Spambots Detection with indeterminate actions and mismatches. It is a generalization of the previous problem (1).
\rightarrow Our algorithm takes into account temporal information, because it considers:

- Time-annotated sequences, and
- Requires a match to occur within a time window t.

Background

- Let $T=a_{0} \ldots a_{n-1}$ be a string of length $|T|=n$ over an alphabet Σ of size $|\Sigma|=\sigma$
- For $1 \leq i \leq j \leq n, T[i]$ denotes the ith symbol of T, and $T[i, j]$ the contiguous sequence of symbols (called factor or substring)
- A substring $T[i, j]$ is a suffix of T if $j=n$ and it is a prefix of T if $i=1$
- A string p is a repeat of T iff p has at least two occurrences in T
- A degenerate or indeterminate string, is defined as a sequence $\tilde{X}=\widetilde{x_{0}} \widetilde{x_{1}} . \widetilde{x_{n-1}}$, where $\widetilde{x_{i}} \subseteq \Sigma$ for all $0 \leq i \leq n-1$
- A degenerate symbol \tilde{x} over an alphabet Σ is a non-empty subset of Σ

Background

- $|\tilde{x}|$ denotes the size of \tilde{x}, and we have $1 \leq \tilde{x} \leq|\Sigma|$.
- If $\left|\widetilde{x}_{i}\right|=1$, that is $\left|\widetilde{x_{i}}\right|$ repeats a single symbol of Σ, we say that $\widetilde{x_{i}}$ is a solid symbol and i is a solid position. Otherwise, $\widetilde{x_{i}}$ and i are said to be a non-solid symbol and non-solid position respectively.
- A conservative degenerate string is a degenerate string where its number of non-solid symbols is upper-bounded by a fixed position constant c.

Example

$$
X=a b[a c] a[b c d] b a c
$$

Is a degenerate string of length 8 over the alphabet $\Sigma=\{a, b, c, d\}$, and conservative degenerate string

$$
\text { with } c=2 \text {. }
$$

Background

- A suffix array of T is the lexicographical sorted array of the suffixes of a string T i.e., the suffix array of T is an array SA[1...n] in which SA[i] is the ith suffix of T in ascending order.
- $\operatorname{LCP}(\boldsymbol{T 1}, \mathbf{T 2})$ is the length of the longest common prefix between strings T_{1} and T_{2}, and it is usually used with SA such that $L C P[i]=\operatorname{Icp}\left(T_{\mathrm{SA}[\mathrm{i}}, T_{\mathrm{SA}[i-1]}\right)$ for all $i \in[1 . . n]$.

Disguised (Indeterminate) Actions

- Some spambots might attempt to disguise their actions by varying certain actions.

Example

a spambot takes the actions ABCDEF, then ACCDEF, then ABDDEF

$$
\text { can be described as } \rightarrow \mathrm{A}[\mathrm{BC}][\mathrm{CD}] \mathrm{DEF}
$$

The action $[B C]$ and $[C D]$ are variations of the same sequence
$>A, C, D, E, F \rightarrow$ (solid symbols)
$>[B C][C D] \rightarrow$ (indeterminate or non-solid symbols)
$\rightarrow \mathrm{A}[\mathrm{BC}][\mathrm{CD}] \mathrm{DEF} \rightarrow$ (degenerate string)

Problems Definitions

A. Given a sequence $T=a_{1} \ldots a_{n}$, and an action sequence $\tilde{S}=s_{1} s_{2} \ldots s_{m}$, find all occurrences of \tilde{S} in T where s_{i} might be solid or indeterminate.
B. Given a temporal annotated sequence $T=\left(a_{1}, t_{1}\right) \ldots\left(a_{n}, t_{n}\right)$, and an action sequence $\tilde{S}=s_{1} s_{2} \ldots s_{m}$, find all occurrences of \tilde{S} in T in time window t, where s_{i} might be solid or indeterminate with hamming distance between \tilde{S} and T is no more than k mismatches.

Our Main Problem

Since Problem B is a generalization of Problem A, we will focus on Problem B in this presentation.
(f, c, k, W)-Disguised Spambots Detection with indeterminate actions and mismatches:
Given a temporal annotated sequence $T=\left(a_{1}, t_{1}\right) \ldots\left(a_{n}, t_{n}\right)$, a dictionary \bar{S} containing sequences $\widehat{\mathrm{S}_{\mathrm{i}}}$, each has a \boldsymbol{c} non-solid symbol (represented by \#), associated with a time window $\boldsymbol{W}_{\boldsymbol{i}}$, a minimum frequency threshold \boldsymbol{f}, and a maximum Hamming distance threshold \boldsymbol{K}, find all occurrences of each $\widehat{\boldsymbol{S}_{\boldsymbol{i}}} \in \overline{\boldsymbol{S}}$ in \boldsymbol{T}, such that each $\widehat{\boldsymbol{S}_{\boldsymbol{i}}}$ occurs:
I. At least \boldsymbol{f} times within its associated time window $\boldsymbol{W}_{\boldsymbol{i}}$, and
II. With at most \boldsymbol{K} mismatches according to Hamming distance.

Disguised Actions with K Mismatches

Preprocessing Stage

Our algorithms require as input sequences temporally annotated actions. These temporally annotated sequences are produced from user logs consisting of a collection of http requests.

> 125.127.33.125 - smith [14/Oct/2019: 10:12:26-0500] "GET/blog/page-address.htm HTTP/1.1" 2001043
> "-" "Mozilla/5.0 Chrome/80.0.3134.311"

Date - Time Stamp

Time Point t

Action Request

Disguised Actions with K Mismatches

Definition

A Temporally Annotated Action Sequence: is a sequence
$T=\left(a_{0}, t_{0}\right),\left(a_{1}, t_{1}\right), \ldots\left(a_{n}, t_{n}\right)$, where $a_{i} \in A$, with A set of actions, and \boldsymbol{t}_{i} represents the time that action a_{i} took place. Note that $\boldsymbol{t}_{\boldsymbol{i}}<\boldsymbol{t}_{\boldsymbol{i}+\boldsymbol{1}}, \forall \mathrm{i} \in[0, \mathrm{n}]$.

Disguised Actions with K Mismatches

Our Spambot Dictionary Representation

\boldsymbol{i}	$\boldsymbol{S}_{\boldsymbol{i}}$	$\boldsymbol{W}_{\boldsymbol{i}}(\mathbf{s e c})$
1	cbbx	20
2	byadc	25
\ldots	\ldots	\ldots

Disguised Actions with K Mismatches

Algorithm Steps:

Step 1: For each non-solid $\boldsymbol{s}_{\boldsymbol{j}}$ occurring in degenerate sequence $\tilde{S}=s_{1} s_{2} \ldots s_{m}$, we substitute each s_{j} with ' $\#$ ' symbol, where ' $\#$ ' is not in Σ. Let $\widehat{\boldsymbol{S}}$ be the resulting pattern after substitution.

\widetilde{S}	A	B	$[G X]$	C	[AD]	F
\widehat{S}	A	B	$\#_{1}$	C	$\#_{2}$	F

Disguised Actions with K Mismatches

Step 2: Extract the actions of the temporally annotated sequence T into T_{a} such that it contains only the actions $\boldsymbol{a}_{\mathbf{1}} \ldots \boldsymbol{a}_{\boldsymbol{n}}$ from T.

Step 3: Build Generalized Enhanced Suffix Array (GESA):

it is an enhanced suffix array for a set of strings, each one ending with a special character and usually is built to find the Longest Common Sequence (LCS) of two strings or more. GESA is indexed as a pair of identifiers $\left(i_{1}, i_{2}\right)$.

```
String number
```

Lexicographical order of the suffix

Disguised Actions with K Mismatches

Generalized Enhanced Suffix Array for a collection of texts ($\boldsymbol{T}_{\boldsymbol{a}}$ and $\overline{\boldsymbol{S}}_{\widehat{S}_{\mathrm{i}}}$):

$$
\operatorname{GESA}\left(T_{a}, \bar{S}_{\widehat{S}_{i}}\right)=\operatorname{Ta}!_{0} \hat{S}_{1}!_{1} \hat{S}_{2}!_{2} \ldots \hat{S}_{r}!_{r}
$$

- $\hat{S}_{1}, . ., \hat{S}_{r}$ are spambots sequences belong to dictionary \bar{S}
- $!_{0}, \ldots,!_{r}$ are special delimiters not in Σ, and smaller than any alphabetical letter in $\boldsymbol{T}_{\boldsymbol{a}}$ and smaller than ' $\#^{\prime}$

Disguised Actions with K Mismatches

- Our algorithm will refer to a collection of tables (GESA, GESA $\left.{ }^{R}, L C S, T, \bar{S}_{\widetilde{S}_{i}}\right) \rightarrow$ to find disguised spambots within a time window t as follows:
- Given a temporally annotated action sequence $\boldsymbol{T}=\left(\boldsymbol{a}_{\mathbf{0}}, \boldsymbol{t}_{\mathbf{0}}\right)\left(\boldsymbol{a}_{\mathbf{1}}, \boldsymbol{t}_{\mathbf{1}}\right) \ldots\left(\boldsymbol{a}_{\boldsymbol{n}-\mathbf{1}}, \boldsymbol{t}_{\boldsymbol{n}-\mathbf{1}}\right)$, an action sequence $\widehat{\boldsymbol{S}}=\boldsymbol{s}_{\mathbf{1}} \boldsymbol{s}_{\mathbf{2}} \ldots \boldsymbol{s}_{\boldsymbol{m}}$, and an integer t, we will compute $\boldsymbol{j}_{\mathbf{1}}, \boldsymbol{j}_{\mathbf{2}}, \ldots, \boldsymbol{j}_{\boldsymbol{m}}$ such that $\boldsymbol{a}_{\boldsymbol{j}_{i}}=\boldsymbol{s}_{\boldsymbol{i}}, \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{m}$ and $\sum_{i=1}^{m} \boldsymbol{t}_{\boldsymbol{j}_{i}}<\boldsymbol{t}$ or $\boldsymbol{t}_{\boldsymbol{j}_{\boldsymbol{m}}}-\boldsymbol{t}_{\boldsymbol{j}_{\mathbf{1}}}<\boldsymbol{t}$ with Hamming distance between $\boldsymbol{T}_{\boldsymbol{a}}$ and $\widehat{\boldsymbol{S}}$ no more than \boldsymbol{k} mismatches.

Disguised Actions with K Mismatches

- Our algorithm, also includes:
> Initialization for hashMatchTable to do bit masking operation
$>$ Kangaroo method to find the Longest Common Sequence LCS between a sequence of actions in \boldsymbol{T} and an action sequence $\widehat{\boldsymbol{S}}_{\boldsymbol{i}}$ with at most \boldsymbol{K} mismatches in linear time.

Disguised Actions with K Mismatches

- Step 4: For each $\widehat{\boldsymbol{S}}_{\boldsymbol{i}}$ in the spambots dictionary $\overline{\boldsymbol{S}}_{\widehat{S}_{i}}$, the algorithm calculates the Longest Common Sequence LCS between $\widehat{\boldsymbol{S}}_{\boldsymbol{i}}$ and $\boldsymbol{T}_{\boldsymbol{a}}$ starting at position 0 in sequence \hat{S}_{i} and at position j in sequence T_{a}, such that the common substring starting at these positions is maximal as follows:
\Rightarrow Find the the suffix index \boldsymbol{i} of $\widehat{\boldsymbol{S}}_{\boldsymbol{i}}$ in $G E S A$ using $\boldsymbol{G E S} \boldsymbol{A}^{\boldsymbol{R}}$ table (retains all the lexicographical ranks of the suffixes of $G E S A$).
$>$ Find the closest suffix \boldsymbol{j} (belongs to a sequence in $\boldsymbol{T}_{\boldsymbol{a}}$) to the suffix $\boldsymbol{i}\left(\right.$ of $\left.\widehat{\boldsymbol{S}}_{\boldsymbol{i}}\right)$ in $G E S A$.

Disguised Actions with K Mismatches

$>$ Compute the Longest Common Sequence LCS between $\operatorname{GESA}(i)$ and $\operatorname{GESA}(j)$ as follows:

$$
\operatorname{LCS}\left(\widehat{\boldsymbol{S}}_{\boldsymbol{i}}, \boldsymbol{T}_{\boldsymbol{a}}\right)=\boldsymbol{\operatorname { m a x }}\left(\boldsymbol{\operatorname { L C P }}\left(G E S A\left(i_{1}, i_{2}\right), G E S A\left(j_{1}, j_{2}\right)\right)\right)=\boldsymbol{l}_{\mathbf{0}}
$$

Where $\boldsymbol{l}_{\boldsymbol{0}}$ is the maximum length of the longest common subsequence matching characters between $\operatorname{GESA}\left(i_{1}, i_{2}\right)$ and $\operatorname{GESA}\left(j_{1}, j_{2}\right)$ until the first mismatch (or one of the sequences terminates).

Disguised Actions with K Mismatches

$>$ Next, find the length of the longest common subsequence matching characters after previous mismatch position $\boldsymbol{l}_{\mathbf{0}}$ using Kangaroo method until the second mismatch (or one of the sequences terminates) as follows:

$$
\boldsymbol{\operatorname { m a x }}\left(\boldsymbol{\operatorname { C P P }}\left(G E S A\left(i_{1}, i_{2}+l_{0}+1\right), G E S A\left(j_{1}, j_{2}+l_{0}+1\right)\right)\right)=\boldsymbol{l}_{\mathbf{1}}
$$

Disguised Actions with K Mismatches

$>$ Once our algorithm encounters ' $\#$ ' in the sequence $\widehat{S}_{\boldsymbol{i}}$, it will get into the verification process:

- Query whether the corresponding action $\boldsymbol{a}_{\boldsymbol{i}}$ (in $\boldsymbol{T}_{\boldsymbol{a}}$) belongs to the set of actions in ' $\#$ ', to do that:
- The algorithm uses a bit masking operation (And bit wise operation) between the two sets (' $\#$ ' and $\boldsymbol{a}_{\boldsymbol{i}}$) such that ($\boldsymbol{a}_{\boldsymbol{i}}$ is represented by a bit ' 1 ', and each action in ' $\#$ ' is represented by ' 1 ' and ' 0 ' otherwise using hashMatchTable).

Disguised Actions with K Mismatches

hashMatchTable

- The columns are indexed by the (ascii code) of each character ($\boldsymbol{a}_{\boldsymbol{i}} \in \Sigma$) (for directly access)
- The rows are indexed by the number of the spambots sequence $\widehat{\boldsymbol{S}}_{\boldsymbol{i}}$ and the number of ' ${ }_{l}$ '
- The algorithm applies the following formula:

$$
1 \wedge \text { hashMatchTable }\left[\widehat{\boldsymbol{S}}_{r} \#_{l}\right]\left[\operatorname{ascii}\left[\boldsymbol{a}_{\boldsymbol{i}}\right]\right]
$$

Disguised Actions with K Mismatches

hashMatchTable

$$
\widetilde{\boldsymbol{s}_{\mathbf{1}}}=A B[G X] C[A D] F \rightarrow \widehat{\boldsymbol{s}}_{\mathbf{1}}=A B \#_{1} C \#_{2} F
$$

Ascii $\left(a_{i}\right)$	65 A	$\mathbf{6 6}$ B	$\mathbf{6 7}$ C	$\mathbf{6 8}$ D	\ldots \ldots	$\mathbf{7 1}$ \mathbf{G}	\ldots \ldots	88 \mathbf{X}	89 \mathbf{Y}	$\mathbf{9 0}$ \mathbf{Z}
$\widehat{\boldsymbol{S}}_{\mathbf{1}} \#_{\mathbf{1}}$	0	0	0	0	\ldots	1	\ldots	1	0	0
$\widehat{\boldsymbol{S}}_{\mathbf{1}} \#_{\mathbf{2}}$	1	0	0	1	\ldots	0	\ldots	0	0	0
\ldots										
$\widehat{\boldsymbol{S}}_{\boldsymbol{r}} \#_{\boldsymbol{l}}$	\ldots									

Disguised Actions with K Mismatches

- Step 5: Finally, at each occurrence of $\widehat{\boldsymbol{S}}_{\boldsymbol{i}}$ in the sequence $\boldsymbol{T}_{\boldsymbol{a}}$, our algorithm checks its time window W_{i} using the dictionary $\overline{\boldsymbol{S}}_{\widehat{S}_{i}}$ in \boldsymbol{T}, such that it sums up each time t_{i} associated with its action a_{i} starting at the position j_{2} in $\operatorname{GESA}\left(j_{1}, j_{2}\right)$ until the length of the spambot $\left|\widehat{\boldsymbol{S}}_{\boldsymbol{i}}\right|$, and then compare it to its time window W_{i}. If the resultant time is less than or equal to W_{i}, the algorithm considers that the sequence $\widehat{\boldsymbol{S}}_{\boldsymbol{i}}$ is spambots and terminates.
$>$ The algorithm will continue to find other occurrences of the spambot sequence $\widehat{\boldsymbol{S}}_{\boldsymbol{i}}$ using the adjacent suffixes to the suffix index of $\widehat{\boldsymbol{S}}_{\boldsymbol{i}}$ in GESA.

Illustration by Example

Example

- Suppose : $T_{a}=A B B A B G C D F C B A C A F A A B G D F F, \widehat{S}_{1}=B \#_{1} C \#_{2} F$
- $\#_{1}=[\mathrm{GX}], \#_{2}=[\mathrm{AD}], K=2, f=2$
- Concatenation strings of $T a!_{0} \widehat{S}_{1}$!

0	1	2	3	4	5	6	7	8	9	0	11	2	13	14	15	16	17	18	19	20	21	22	3	24	25	26	27	28
A	B	B	A	B	G	c	D	F	C	B	A	C	λ	F	A	A	B	G	D	F	F	10	B	$\dagger 1$	C	$\dagger 2$	F	\square_{1}

Illustration by Example

i	$G E S A[i]$	Suffix	$G E S A^{R}[i]$
0	$(1,28)$	$!_{1}$	5
1	$(0,22)$	$!_{0} b \#_{1} c \not \#_{2} f!_{0}$	13
2	$(1,24)$	$\#_{1} c \#_{2} f!_{1}$	11
3	$(1,26)$	$\#_{2} f!_{1}$	6
4	$(0,15)$	aabgdf $f!_{0} b \#_{1} c \#_{2} f!_{1}$	14
5	(0,0)	$a b b a b g c d f c b a c a f a a b g d f f!_{0} b \#_{1} c \#_{2} f!_{1}$	27
6	$(0,3)$	$a b g c d f c b a c a f a a b g d f f!_{0} b \#_{1} c \#_{2} f!_{1}$	19
7	$(0,16)$	$a b g d f f!_{0} b \not \#_{1} c \neq \#_{2} f!_{1}$	20
8	$(0,11)$	$a c a f a a b g d f f!_{0} b \#_{1} c \#_{2} f!_{1}$	25
9	$(0,13)$	$a f a a b g d f f!_{0} b \#_{1} c \neq \#_{2} f!_{1}$	18
10	$(1,23)$	$b \#_{1} c \#_{2} f!_{1}$	12
11	$(0,2)$	babgcdf cbaca faabgdf $f!_{0} b \#_{1} c \#_{2} f!_{1}$	8
12	$(0,10)$	$b \underline{c a c a l a b g d f ~} f!_{0} b \#_{1} c \#_{2} f!_{1}$	17
13	$(0,1)$	$b \bar{b} a b g c d f$ cbaca faabgdf $f!_{0} b \#_{1} c \not \#_{2} f!_{1}$	9
14	$(0,4)$	$b g c d f c b a c a f a a b g d f f!_{0} b \#_{1} c \#_{2} f!_{1}$	24
15	$(0,17)$	$b g \mathrm{~d} f f!_{0} b \#_{1} c \#_{2} f!_{1}$	4
16	$(1,25)$	$c \#_{2} f!_{1}$	7
17	$(0,12)$	$c a f$ aabgdf $f!_{0} b \#_{1} c \#_{2} f!_{1}$	15
18	$(0,9)$	cbacafaabgdf $f!_{0} b \#_{1} c \#_{2} f!_{1}$	28
19	$(0,6)$	cdfcbaca faabgdf $f!_{0} b \#_{1} c \#_{2} f!_{1}$	21
20	$(0,7)$	$d f c b a c a f a a b g d f f!_{0} b \#_{1} c \#_{2} f!_{1}$	26
21	$(0,19)$	$d f f!_{0} b \#_{1} c \#_{2} f!_{1}$	23
22	$(1,27)$	$f!_{1}$	1
23	$(0,21)$	$f!_{0} b \#_{1} c \neq \#_{2} f!_{1}$	10
24	$(0,14)$	faabgdf $f!_{0} b \#_{1} c \#_{2} f!_{1}$	2
25	$(0,8)$	$f c b a c a f a a b g d f f!_{0} \#_{1} c \neq \#_{2} f!_{1}$	16
26	$(0,20)$	$f f!_{0} b \#_{1} c \not \#_{2} f!_{1}$	3
27	$(0,5)$	$g c d f$ cbaca faabgdf $f!_{0} b \#_{1} c \#_{2} f!_{1}$	22
28	$(0,18)$	$g d f f!_{0} b \#_{1} c \not \#_{2} f!_{1}$	0

There are three occurrences for \widehat{S}_{1} in T at $i=$ 12,14 and 15

Disguised Actions with K Mismatches

Experimental Evaluation

$>$ Our experiments showed that our algorithm is efficient and applicable to large action sequences.
$>$ See our paper for details.

Conclusion

$>$ We introduced our algorithm (f, c, k, W)-Disguised Spambots Detection with indeterminate actions and mismatches.
$>$ Our algorithm takes into account temporal information, because it considers time-annotated sequences, and because it requires a match to occur within a time window.
> The problem seeks to find all occurrences of each conservative degenerate sequence corresponding to a spambot that occurs at least f times within a time window and with up to k mismatches.

Conclusion

$>$ For this problem, we designed a linear time and space inexact matching algorithm, which employs the generalized enhanced suffix array data structure, bit masking and Kangaroo method to solve the problem efficiently.

Thank You
iugivk
lon

