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 Ten years ago, it was expected that in 2020,
mobile and wireless traffic volume will increase
thousand-fold over 2010 figures

 Now, we see exponential increase in mobile
data traffic and it is considered as a critical
trigger towards the new era, or 5G, of mobile
wireless networks

 5G will require very high carrier frequency
spectra with massive bandwidths, extreme
base station densities, and unprecedented
numbers of antennas for supporting the
enormous increase in the volume of traffic



 This increase in the number of wirelessly-connected
devices in the tens of billions points will have a profound
impact on society

 Massive machine communication, a basis for the
Internet of Things (IoT), will make our everyday life
more efficient, comfortable and safer, through a wide
range of applications including traffic safety and medical
services

 The variety of applications and data traffic types will be
significantly larger than today, and will result in more
diverse requirements on services, devices and networks



 Wireless sensor networks (WSNs) will play a
fundamental role in the realization of Internet
of Things (IoT) and Industry 4.0

 Arising from the presence of spatially
distributed sensor nodes in a sensor network
cooperative diversity can be achieved by using
the sensor nodes between a given source-
destination pair as intermediate relay stations



 So, multi-hop wireless relaying technique has
recently received significant attention especially in
cellular, modern ad-hoc, and wireless sensor
networks for its performance benefits

 This is an efficient technology for increasing the
coverage with respect to the channel path-loss,
and including hotspot throughput improvements

 These advantages of multi-hop relaying are
particularly pronounced for rural areas with small
population and low level of traffic density



 The transmission characteristics of multi-hop
relaying systems have been widely
investigated

 Significant attention is dedicated to
cascaded fading channels which appear in
wireless multi-hop transmission
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 The received signals are created as the products
of a large number of rays reflected via N
statistically independent scatters

 Therefore, the statistical analysis of products of
two or more random variables (RVs) is
intensified because of their applicability in
performance analysis of wireless relay
communication systems with more hops
(sections)



 The wireless relay system output signal is a
product of signal envelopes from each
system sections

 Because of that, the cascade fading models
are developed by the product of independent
but not necessarily identically distributed
random variables



 Many researchers are currently working in
this area and new cascade fading models
have been suggested recently in the
literature

 Due to this fact, the performance of products
of a higher number of random variables has
become an important topic over the past
decade



 The products of RVs are applied not only in
wireless channel modeling, multi-hop relay
systems, multiple input multiple output
(MIMO) keyhole systems, cascaded
channels with fading, but also in other natural
sciences, such as biology and physics
(especially quantum physics), and also in
social sciences, econometrics, ...



 In order to fill the gap areas in the literature
tied to cascaded models, an analysis has
been done here

 This effort will surely help the researchers
working in this area, to be able to identify the
most appropriate fading channel model for an
efficient wireless relay communication system
design



 In this tutorial, mostly a wireless multi-hop relay
communication system operating in a multipath
fading environment will be analyzed

 The processes of derivation the system performance
of the first-order (probability density function (PDF),
cumulative distribution function (CDF), outage
probability (OP), moments, amount of fading (AoF))
and the second-order (level crossing rate (LCR) and
average fade duration (AFD)) will be presented for

different fading distributions



 The impact of the specific parameters will
be analyzed

 Based on this analysis, it is possible to
estimate the behavior of real systems in
the presence of fading



About fading

 In wireless communications, fading is
deviation of the attenuation affecting a signal
over propagation media

 The fading may vary with time, geographical
position or frequency, and it is modeled as a
random process

 In wireless systems, fading may either be
due to multipath propagation, called
multipath fading, or due to shadowing from
obstacles affecting the wave propagation



Multipath fading

 Short-term fading (multipath fading) is
propagation phenomena caused by
atmospheric, ionospheric reflection and
refraction, and reflection from water bodies
and terrestrial objects

 Multipath fading degrades the system
performance and limits the system capacity

 Received signal experiences fading resulting
in signal envelope variation



Shadowing

 Shadowing is the result of the topographical
elements and other structures in the
transmission path such as trees, tall
buildings...

 A log-normal or gamma distribution model
the average power to account for shadowing



 There are more distributions that can be used to
describe signal envelope variation in fading
channels, which are dependent on propagation
environment and communication scenario

 They depend on existence of line of sight
component, nonlinearity of propagation
environment, the number of clusters in
propagation channel, inequality of quadrature
components power and signal envelope power
variation



 Various statistical models explain the nature
of fading and several distributions describe
the envelope of the received signal:
Rayleigh, Rician, Nakagami-m, Hoyt or
Nakagami-q, Weibull, -µ, -κ-µ, κ-µ, -μ, …
which was originally derived for reliability
study purposes



 A multipath fading channel is a communication
channel containing multipath fading

 The communication wireless relay mobile radio
systems will be consider in this lecture

 A radio transmission system in which
intermediate radio stations or radio repeaters
receive and retransmit radio signals is known
as relay system



 Wireless relay system can have several
(two or more) sections

 The desired signal in sections is subjected
to some kind of multipath fading



Outage probability

 We need to determined the first and the
second order system performance

 The outage probability is important the first
order performance measure of wireless
communication system which is defined as
probability that receiver output signal
envelope falls below of the specified
threshold and can be calculated from
cumulative distribution function



 Mathematically, the outage probability is the
CDF of the signal and is given by:

with γth being the threshold value

   out th thP P z  



 There are two ways to define the outage
probability in wireless relay systems

 For the first case, the outage probability is
defined as probability that the signal envelope
in any sections falls below the specified
threshold

 The outage probability for this case can be
calculated as Cumulative Distribution Function
(CDF) of minimum of signal envelopes from
sections



 For the second case, the outage probability is
defined as probability that output signal
envelope falls down the determined threshold

 The outage probability for this case is equal to
the CDF of product of signal envelopes at
sections



Level crossing rate

 Also, useful closed form expression for
average level crossing rate (LCR) are
calculated for some cases

 The level crossing rate is the second order
system performance



Average fade duration

 The resulting integrals are solved for
example by using the Laplace approximating
formula or some other method

 Later, the expression for LCR can be used
for calculating the average fade duration
(AFD) of proposed relay system
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 The κ-µ distribution describes signal
envelopes in channels with dominant
components

 The κ-µ distribution is characterized by two
parameters

 The parameter κ is Rician factor, which is 
defined as the ratio of dominant component
power and scattering components power



 The parameter µ is related to the number of
clusters in propagation channel

 The κ-µ small scale fading is more severe for
less values of parameter µ

 Also, the κ-µ multipath fading is more severe
for lesser value of dominant component
power and higher values of scattered
components power



 The κ-µ distribution is general distribution

 The κ-µ distribution reduces

 -to Nakagami-m distribution for κ=0, 

 -to Rician distribution for µ=1, and

 -to Rayleigh distribution for κ=0 and µ=1



 When Rician factor goes to infinity,
κ-µ multipath fading channel
becomes no fading channel

 Also, when parameter µ goes to
infinity, there is no fading in the
channel



PROBABILITY DENSITY FUNCTION AND CUMULATIVE

DISTRIBUTION FUNCTION OF MINIMUM OF TWO Κ-µ
RANDOM VARIABLES

 The probability density function of κ-µ random variable x1 is:

where κ is Rician factor, µ is severity parameter and 1 is
signal envelope average power

-The random variable x2 follows also κ-µ distribution
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 Cumulative distribution function of x1 is:

where (n, x) is incomplete Gamma function of argument x
and order n

 Cumulative distribution function of x2 has the same shape
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 When the signal level at any section falls below the
defined threshold, the outage probability can be
calculated from cumulative distribution function of
the minimum of the signal envelopes at sections of
wireless communication system

 Let analyze the minimum x of two random variables
x1 and x2, which is define as:

 1 2min ,x x x



 Probability density function of minimum x of two
random variables is:

 Cumulative distribution function of minimum x of two
random variables is:

         xFxpxFxpxp xxxxx 1221
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CDF of minimum x of two κ-µ random variables is:



 The outage probability is the probability that
the receiver output signal envelope is below a
given threshold γth

 It can be straight calculated as:

where Fx (x) is presented in the previous slide

   out th xP F x 



 Here, CDFof minimum of two κ-µ random
variables is the outage probability of wireless
relay communication system with two
sections over κ-µ multipath fading channel



Probability Density Function and Cumulative
Distribution Function of Product of Two κ-µ Random
Variables

 By the second definition, the outage
probability of wireless relay system can be
calculated as probability that signal envelope
at the output of wireless relay communication
system falls below the predetermined
threshold

 For this case, the outage probability can be
calculated as cumulative distribution function
of product of two κ-µ distributed signals.



 Product of two κ-µ random variables x1 and x2 is:

 Conditional PDF of x is:
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 After integration, the expression for px(x) becomes:
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 Cumulative distribution function of x is:
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 After substituting, the previous expression for CDF becomes:

Kn(x) is the modified Bessel function of the second kind
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The cumulative distribution function of
minimum of two κ-µ random variables



NUMERICAL RESULTS

 The cumulative distribution function of minimum of
two κ-µ random variables versus signal envelope is
presented in previous Figure

 The CDF is plotted for μ1=μ2=2 and variable
parameters κ1 and κ2

 It is visible that CDF increases with increasing of the
signal envelope

 The cumulative distribution function decreases for
larger values of Rician factor κ1

 Also, one can see from this figure that CDF is bigger
for higher values of Rician factor κ2



The cumulative distribution function of the
product of two κ-µ random variables



 The cumulative distribution function of product of two κ-
µ random variables depending on the signal envelope is
presented in new Figure

 The parameters μ1 and μ2 are equal to each other and
have a value of 2

 It is possible to see from this Figure that CDF becomes
bigger with increasing of the signal envelope

 It shows that CDF is less for higher values of Rician
factors κ1 and κ2



 The system performance is better for smaller values
of the outage probability, i.e., cumulative distribution
function

 This can be achieved by increasing the Ricean
factors κ1 and κ2

 Since Rician factor is the ratio of dominant
component power and scattering components
power, it is evident that bigger dominant component
powers and smaller scattering components give
better system performance



Conclusion 1

 In this article, the communication relay radio
system with two sections exposed to κ-µ
multipath fading is analyzed

 The outage probability is calculated in the
closed forms for the minimum and product of
two random variables



 The obtained formulas for the outage probability for
relay (κ-µ)*(κ-µ) channels could be used for
calculation the outage probability of other relay
channels

 For κ1=0 and κ2=0, (κ-µ)*(κ-µ) relay channel reduces
to Nakagami- Nakagami relay channel;

 for µ1=1 and µ2=1, (κ-µ)*(κ-µ) channel becomes
Rician*Rician channel

 Because of that, this article has general importance



 Results of this analysis can be used by
designers of relay systems in the case of
presence of fading with κ-µ distribution

 The designers of these systems can choose
optimal parameters for given value of the
outage probability

 Because of the generality of the results, the
presence of other types of fading can also be
covered with this investigation
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Probability Density Functions of κ-µ
Random Variable and η-µ Random Variable

 The κ-µ random variable follows distribution:
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 The η-µ random variable follows distribution:
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 The parameters are:

 The variances of in-phase and quadrature
independent Gaussian processes are
arbitrary with the ratio η

1 12
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H h

h h h h
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Cumulative Distribution Functions of κ-µ
Random Variable and η-µ Random Variable

 Cumulative distribution function of κ-µ
random variable x1 is:

   
   

 

 1 21

1 1

1

0

1

1

1

1

1 2 1 1
2 2 2 1

1 1
1 1 1 02 2

1
0

2 1 1 1

!
i

i kx
t

x

k

x

i
x

k k k
t dt t e

i i
F x dt p

k e

  



 








    
  

 

  
   
   






  

   
   

 
1 1

01

1 2 1
2

21
1 1 11 1

1 1 1 1
2 2

1

2 1 1 11 1
, , 0

! 2 1
i

i i

k

k k k k
i x x

i i k
k e

  

 


 
  

 


   

 

       
                   





 where γ(n,x) is incomplete Gamma function:
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 Cumulative distribution function of η-µ random
variable x2 is:
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Minimum of κ-µ Random Variable and η-µ
Random Variable

 Minimum of random variables x1 and x2 is:

 Cumulative distribution function of x is:
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 CDF is:
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 Since the outage probability is actually the
probability that signal envelope becomes
smaller than the determined threshold, the
outage probability of relay system can be
calculated from cumulative distribution
function of minimum of κ-µ random variable
and η-µ random variable:

 where x0 is the determined threshold

( )0 0xP F x=



Product of  κ-µ Random Variable and η-µ
Random Variable

 Random variables x1 follows κ-µ distribution and
random variable x2 follows η-µ distribution

 Product of x1 and x2 is:

1 2x x x 

1
2

x
x

x




 The probability density functions of x is:
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 Finally:

 where Kn(x) marks the modified Bessel function of the
second kind
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 The cumulative distribution function of x is:
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 γ(n,x) is incomplete Gamma function defined as:
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Probability density function of minimum of
κ-µ random variable and η-µ random variable
for κ=1, µ=2 and η=1/4



The cumulative distribution function of minimum of
κ-µ random variable and η-µ random variabl for μ=2
and variable parameters κ1=κ2 and η



The cumulative distribution function of minimum of
κ-µ random variable and η-µ random variabl for μ=2,
η=1/2 and changable parameters κ1 and κ2



 The cumulative distribution function is
smaller for lesser values of Rician factor κ

 Also, one can see that CDF is bigger for
bigger values of fading parameter η

 It can be observed from Fig. 3 that CDF
decreases for larger values of Rician factors
κ1 and κ2



The probability density function of product
of κ-µ random variable and η-µ random
variable for κ=1, µ=2 and η=1/4



The cumulative distribution function of product of κ-
µ random variable and η-µ random variable for μ=2
and variable parameters η and κ1=κ2



The cumulative distribution function of product of
κ-µ random variable and η-µ random variable for
μ=2, η=1/2 and changable parameters κ1 and κ2



 It can be noticed CDF grows with increasing
of signal envelope till saturation

 The CDF is smaller for higher values of
Rician factors κ1 and κ2

 Also, one can see 5 that CDF is bigger for
greater values of fading parameter η  

 It could be remarked also that CDF
decreases for larger values of Rician factors
κ1 and κ2



Conclusion 2

 In this part, communication mobile relay radio
system with two sections is analyzed when the
first section is exposed to κ-µ multipath fading
and the second section is upset by η-µ
multipath fading

 In the channel of the first section the dominant
component is present

 In the second section, the powers of in-phase
and quadrature components are different



 The κ-µ random variable and η-µ random
variable are general random variables, so
that obtained expressions for the outage
probability for relay channel (κ-µ), (η-µ) can
be used for evaluation the outage probability
for other relay channels



 For κ=0 and η=1, (κ-µ), (η-µ) relay channel
reduces to Nakagami, Nakagami relay
channel;

 for µ1=1 and η=1, (κ-µ), (η-µ) distribution
becomes Rician, Nakagami-m relay channel;

 for κ=0 and µ2=1, Nakagami-m, Nakagami-q
distribution may be obtained from (κ-µ), (η-µ)
distribution
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Outline

 THE FIRST ORDER PERFORMANCE OF PRODUCT

OF THREE RICIAN RANDOM VARIABLES

– PDF of Product of Three Rician RVs

– CDF of Product of Three Rician RVs

– Outage probability of Product of Three
Rician RVs

 THE SECOND ORDER PERFORMANCE OF THE

PRODUCT OF THREE RICIAN RANDOM

VARIABLES

– LCR of Product of Three Rician RVs

– AFD of Product of Three Rician RVs



 A three-hop communication system, that we
analyze, is illustrated in the next figure

 It consists of the source node, denoted by
(S), sending the information signal to the
destination (D) with the help of two
consecutive relays, namely R1 and R2

 The AF relay nodes are assumed to be
untrusted and hence, they can overhear the
transmitted information signal while relaying



System model of a three-hop wireless relay



 All nodes are equipped with a single antenna
operating in half-duplex mode

 The consecutive relays are necessary helpers to
deliver the information signal to the destination

 This assumption is valid when the network nodes
experience a heavy shadowing, or when the
distance between terminals is large, or when the
nodes suffer from limited power resources



 For three-hop relay system we will obtain the
second order characteristics

 The knowledge of second-order statistics of
multipath fading channels (level crossing rate
(LCR) and average fade duration (AFD)) can
help us better understand and mitigate the
effects of fading



 For example, the AFD determines the
average length of error bursts in fading
channels

 So, in fading channels with relatively large
AFD, long data blocks will be significantly
affected by the channel fades than short
blocks



THE FIRST ORDER PERFORMANCE OF

PRODUCT OF THREE RICIAN RANDOM

VARIABLES

A) PDF of Product of Three Rician RVs

 Rician fading is a stochastic model for radio
propagation where the signal arrives at the
receiver by several different paths when one of
the paths, typically a line of sight signal or some
strong reflection signals, is much stronger than
the others

 In Rician fading, the amplitude gain is
characterized by a Rician distribution



 Rician RVs xi have Rician distribution:

 where Ωi are mean powers of RVs xi, and

 κi are Rician factors
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 Rician factor is defined as a ratio of signal
power of dominant component and power of
scattered components

 It can have values from [0, ]



 The output signal from multi-hop
relay system is product of random
variables (RVs) at hops outputs

 A random variable x is product of
three Rician RVs:

3

1
i

i

x x






 Probability density function of product of
three Rician RVs x is:
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92

PDF of product of three Rician RVs for different values
of the signal powers for 1=2=3=1



B) CDF of Product of Three Rician RVs

– Cumulative distribution function (CDF) of
product of three Rician RVs is:
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 Rayleigh fading is a model for stochastic fading
when there is no line of sight signal

 Because of that it is considered as a special
case of the more generalized concept of Rician
fading

 Rayleigh fading is obtained for Rician factor κ=0

 A case with κ →∞ present the scenario without 
fading



 Since this reason, derived expressions for CDF
of product of three Rician RVs can be used for
evaluation a CDF of product of three Rayleigh
RVs, also for CDF of product of two Rayleigh
RVs and Rician RV, and CDF of product of two
Rician RVs and Rayleigh RV

 Obtained results can be used in performance
analysis of wireless relay communication radio
system with three sections in the presence of
multipath fading



 This means that derived CDFs are used for cases:

1) when Rician fading is present in all three
sections ( , i=1,2,3), then

2) when Rayleigh fading is present in all three
sections (κ1=κ2=κ3=0), the next

3) when Rayleigh fading is present in two sections
and Rician in one (κ1=κ2=0, ) and

4) when Rayleigh fading is present in one and
Rician fading in two sections (κ1=0, , )

0i 

3 0 

3 0 2 0 



 The outage probability is an important
performance measure of communication links
operating over fading channels

 Outage probability is defined as the probability
that information rate is less than the required
threshold information rate th

C) Outage probability of Product of Three Rician RVs



 Pout is the probability that an outage will occur
within a specified time period:

 px(x) is the PDF of the signal and

 th is the system protection ratio depending on
the type of modulation employed and the
receiver characteristics

 Pout can be expressed as:

 
0

th

out xP p t dt



 

 out x thP F 



 Plots of the outage probability, for different
values of parameters, are shown in Figs. 2 and 3

 The choice of parameters is intended to illustrate
the broad range of shapes that the curves of the
resulting distribution can exhibit

 It is evident that performance is improved with
an increase in Rician factors I

 Also, higher values of fading powers Ωi tend to
reduce the outage probability and improve
system performance, as it is expected



Fig. 2 Outage probability of product of three Rician RVs versus signal
envelope x for different values of Rician factor 1 and signal power Ω=1



Fig. 3 Outage probability of product of three Rician RVs depending on
signal envelope for different values of signal power Ωi and Rician factor =1



Moments of Signals over Wireless Relay
Fading Environment with Line-of-Sight

Dragana Krstic, Petar Nikolic, Zoran Popovic, Sinisa
Minic, Mihajlo Stefanovic



INTRODUCTION

Moments present quantitative measure of the function’s shape

 They are used in both, mechanics and statistics

When we deal with probability distribution, then:
- zero-th moment is total probability,
- the first one is mean of the signal (or expected value)
- the second is the variance (or the average power of signal)
- the third is skewness, and
- the fourth moment is kurtosis



The expected value (also called the mean value) of
the product of three Rician RVs x is defined:

where E denotes the statistical expectation operator,
since px(x)dx is the probability of RV x lying in the
infinitesimal strip dx, mx is interpreted as the
weighted average of x, where each weight is the
probability of that a specific value of x occurring

Moments of Product of Three Rician RVs

   
0

xm E x xp x dx



  



The expected value of a RV is an average of the values
that the RV takes in a large number of experiments and
is called the first moment of a RV:
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The first moment for the product of three Rician
RVs is shown graphically in the next two figures

One can see that the first moment for product
of three Rician RVs depending on Rician factor 
for a few values of signal power Ω=Ω1=Ω2=Ω3 is
bigger for higher values of Ωi





It is possible to notice from figure below an
increasing of the first moment with increasing of
Ω till maximal values

Then, m1 start to decline

For small Ω, m1 is higher for higher values of
Rician factor 





 The second moment is known as the mean-squared
value of the RV, or variance or the signal's average power

 The positive square root of the second moment
(variance) is the standard deviation

 In wireless communication we are speaking about
signal’s average power



 The second moment m2 of the product of three
Rician RVs is:
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The influence of parameters of fading
distribution to the second moment of product of
three Rician RVs can be noticed from next figures
One can see from these figures that the second
moment, variance, enlarges with increasing of
power Ω
For bigger Ω and Rician factor , m2 decreases



m2 of product of three Rician RVs depending on signal power Ω 
for different values of Rician factor i

The second moment achieve maximal value with increasing of Ω and then
start to decline



n-th moment of a RV x is defined as:  
0

n n
nm x dxx p x



  

   

 

1

1

1

1 1 1

2
11 0 1

2 1 1 1

e !

j

j j


  



  
  

  
    

 

2

2

2

2 2 2

2
22 0 2

2 1 1 1

e !

j

j j


  



  
 

  


   

 

1

3

1

3 3 3

2
33 0 3

2 1 1 1

e !

j

j j


  



  
     



   
1 22 2

1 2
1 2

1 2

1 1
1 / 2 1 / 2

2 1 2 1

j j

j n j n
 

 
    

          
    

 
3 2

3
3

3

1
1 / 2

2 1

j

j n



 

    
 



AoF of Product of Three Rician RVs

The amount of fading (AoF) is a measure of severity of fading for observed
channel

For defined distribution of power of a received signal, AoF is a ratio of the
variance of the received energy to the square of the mean of the received
energy

    
2

2 2/AoF Var x E x

- E{·} is statistical average value
- Var{·} denoting the variance



To calculate AoF, the moments of distribution are used

Because of that, this is simple and effective manner to
quantify fading

2
2 1/ 1AoF m m 



The range of values of AoF is given in interval [0, 2]

 AoF=0 corresponds a situation of “no fading”

 AoF=1 corresponds to a single Rayleigh fading
channel

 AoF= 2 refers to one-sided Gaussian distribution; this
is the severest fading



AoF of product of three Rician RVs versus Rician factor 
for different Ωi



AoF of product of three Rician RVs depending on mean
powers Ω for more values of Rician factor i



 It is visible that AoF increases with increasing
of Ω for bigger values of Ω

 For higher values of i and small Ω, AoF has
smaller values, but the situation is reversed for
bigger Ω where AoF has higher values for
higher Rician factor 



THE SECOND ORDER PERFORMANCE OF THE PRODUCT OF

THREE RICIAN RANDOM VARIABLES

 Level crossing rate (LCR) and average
fade duration (AFD) of the signal
envelope are two important second-order
statistics of wireless channel

 They give useful information about the
dynamic temporal behavior of multipath
wireless fading channels



 Level crossing rate is one of the most
important second-order performance
measures of wireless communication system,
which has already found application in
modelling and design of communication
system but also in the design of error
correcting codes, optimization of interleave
size and throughput analysis

A) LCR of Product of Three Rician RVs



 The envelope LCR is defined as the
expected rate (in crossings per second) at
which a fading signal envelope crosses the
given level in the downward direction

 The LCR of RV tells how often the envelope
crosses a certain threshold x



 We should determine the joint
probability density function (JPDF)
between x and , first, then
apply the Rice’s formula to finally
calculate the LCR

 LCR is defined as:
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 LCR of product of three Rician RVs is:
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 Last integral can be solved by using Laplace
approximation theorem for solution the two-fold
integrals solved through:

 We give in this subsection some new graphs for
normalized LCR of product of three Rician RVs
depending on this product x with Rician factor i and
average power i as parameters of curves in Figs. 4
and 5
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Fig. 4 LCR normalized by fm depending on the signal envelope x for various
values of Rician factor i and signal power Ω=1



Fig. 5 LCR normalized by fm versus signal envelope x for
various values of signal powers Ωi



 LCR grows as Rician signal power increases

 The impact of signal envelope power on the LCR
is higher for bigger values of Rician factor I

 LCR increases with increasing of Ωi for all values
of signal envelope

 The impact of signal envelope on the LCR is larger
for higher values of the signal envelope when Ωi

changes

 It is important bring to mind that system has better
performance for lower values of the LCR



 Average fade duration measures how long a
signal’s envelope or power stays below a given
target threshold derived from the LCR

 According to that, AFD is:

 The numerator is the cumulative distribution
function of x from Eq. (*), and Nx (x) is LCR
obtained by solving (**)
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B) AFD of Product of Three Rician RVs



 The normalized AFD (Txfm) of product of three
Rician RVs is plotted in Figs. 6 and 7 versus
signal envelope x

 One can see that for higher values of i and
lower x, AFD has smaller values

 Also, it is visible from Fig. 7 that AFD increases
for all signal envelopes and lower Ωi

 The impact of Ωi is bigger at higher envelopes



Fig. 6 AFD normalized by fm versus signal envelope x for
different values of Rician factor i and signal powers Ωi=1



Fig. 7 AFD normalized by fm depending on signal envelope x for
=1 and different values of signal powers Ωi



Conclusion 3

 In this part, formulas for the PDF, CDF, Pout,
LCR and AFD of the three-hop wireless relay
system in the presence of Rician fading are
derived

 This system output signal is product of three
Rician RVs



 I. Ghareeb, D. Tashman,

“Statistical Analysis of Cascaded Rician Fading
Channels”,

International Journal of Electronics Letters,
ISSN: 2168-1724 (Print) 2168-1732 (Online),
2018, doi:10.1080/21681724.2018.1545925



 Exact-form expressions for the PDF and the
CDF for product of n-Rician independent and
not necessarily identically distributed RVs are
obtained in that paper

 Moreover, expressions for the PDF and CDF of
the instantaneous signal-to-noise ratio (SNR) in
slow frequency nonselective independent and
not necessarily identically distributed cascaded
Rician fading channels are introduced and
analyzed



 Exact-form expressions for the outage
probability and average channel capacity are
also derived

 The average bit error probability (BEP)
expression for phase-shift keying (PSK) signals
operating in additive white Gaussian noise
(AWGN) channel as well as in independent but
not necessarily identically distributed cascaded
Rician fading channels are derived



Outage Probability of Wireless Relay
Communication System with

Three Sections in the Presence of
Nakagami-m Short Term Fading

Danijela Aleksić, Dragana Krstić,

Zoran Popović, Ivana Dinić, Mihajlo Stefanović



 The wireless relay communication system with three
sections operating over Nakagami-m multipath
fading channel is the topic of this part

 The outage probability of proposed relay system is
calculated again for two cases

 In the first case, the outage probability is evaluated
when it is defined as probability that signal envelope
falls below the specified threshold at any section
using cumulative distribution function of minimum of
three Nakagami-m random variables



 In the second case, the outage probability is
calculated when it is defined as probability that
output signal envelope is lower than
predetermined threshold by using the cumulative
distribution function of product of three Nakagami-
m random variables

 Numerical expressions for the outage probability of
relay system are presented graphically and the
influence of Nakagami-m parameter from each
section on the outage probability is estimated



 Nakagami-m distribution has some advantages
versus the other models, such as that this is a
generalized distribution which can model
different fading environments

 It has greater flexibility and accuracy in
matching some experimental data than the
Rayleigh, lognormal or Rice distributions

 Rayleigh and one-sided Gaussian distribution
are special cases of Nakagami-m model



 So the Nakagami-m channel model is of
more general applicability in practical fading
channels

 Nakagami-m statistical model describes
signal envelope in non line of sight (LOS),
linear multipath fading channel where signal
propagates with one, two or more clusters

 Nakagami-m distribution has severity
parameter m and signal envelope average
power Ω



 The parameter m is is greater than 0.5

 When parameter m is equal to one, Nakagami-m
distribution reduces to Rayleigh distribution;

 when parameter m tends to 0.5, Nakagami-m
statistical model turn into one sided Gaussian
statistical model and

 when parameter m goes to infinity, Nakagami-m
multipath fading channel becomes no fading
channel



 Here, considered wireless relay system has
three sections and Nakagami-m fading is
present in channel’s sections

 This channel can be denoted as Nakagami-
Nakagami- Nakagami channel

 It has three parameters which are denoted
with m1, m2 and m3

 Also, Nakagami- Nakagami- Nakagami relay
channel is general channel and several
channels can be derived from this channel



 For m1=1, Nakagami- Nakagami- Nakagami
channel becomes Rayleigh- Nakagami-
Nakagami channel;

 for m1=1 and m2=1, Nakagami- Nakagami-
Nakagami channel becomes Rayleigh -
Rayleigh - Nakagami channel, and

 for m1=1, m2=1 and m3=1, Nakagami-
Nakagami- Nakagami channel becomes
Rayleigh- Rayleigh – Rayleigh channel



 For m1=0.5, Nakagami- Nakagami-
Nakagami channel becomes One sided
Gaussian- Nakagami- Nakagami channel;

 for m1=0.5 and m2=0.5, Nakagami-
Nakagami- Nakagami channel becomes One
sided Gaussian- One sided Gaussian-
Nakagami channel, and

 for m1=1/2, m2=1/2 and m3=1/2, Nakagami-
Nakagami- Nakagami channel becomes One
sided Gaussian- One sided Gaussian- One
sided Gaussian relay channel



 Also, for m1 goes to infinity, Nakagami- Nakagami-
Nakagami relay channel becomes no fading-
Nakagami- Nakagami channel

 for m1 goes to infinity and m2 goes to infinity,
Nakagami- Nakagami- Nakagami relay channel
becomes no fading- no fading - Nakagami relay
channel, and

 for m1 goes to infinity, m2 goes to infinity and m3 goes
to infinity, Nakagami- Nakagami- Nakagami relay
channel becomes no fading- no fading - no fading
channel



Statistics of Minimum of Three
Nakagami Random Variables

 Random variables x1, x2 and x3 follow Nakagami-m
distribution:
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 (.) is the Gamma function, Ωi is the average
signal power

 mi represents the inverse normalized variance
y2, which must satisfy , describing the
fading severity

1 1/ 2m 



 Cumulative distribution functions (CDF) of x1,
x2 and x3 are:
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 Minimum of x1, x2 and x3 is:

1 2 3min( , , )x x x x



 Probability density function (PDF) of x is:
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 Cumulative distribution function of minimum
of three Nakagami-m random variables is:
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 In the previous expressions, parameter m1 is
severity parameter of Nakagami-m fading in
the first section, m2 is severity parameter of
Nakagami-m fading in the second section
and m3 is the severity parameter of
Nakagami-m fading in the third section

 The Ω1 is signal envelope average power in
the first section, Ω2 is signal envelope
average power in the second section and Ω3

is signal envelope average power in the third
section



PDF of minimum of three Nakagami-m
random variables for m1 = m2 =m3 =2



The outage probability of minimum of three
Nakagami-m random variables for m1 = m2 =m3 =2



PDF of minimum of three Nakagami-m
random variables for m1 = m2 =m3 =3



The outage probability of minimum of three
Nakagami-m random variables for m1 = m2 =m3 = 3



 Probability density functions of x are
shown in Figs. 1. and 3 versus of minimum
of three Nakagami-m random variables

 Severity parameters of Nakagami-m fading
are m1 = m2 =m3 =2 in Fig. 1 and
m1=m2=m3 = 3 in Fig. 2

 Signal envelope average powers are
Ω1=Ω2 = Ω3 =1 in both figures



 In Figs. 2 and 4, the outage probability
in terms of minimum of three
Nakagami-m random variables are
shown for several values of severity
Nakagami parameters and several
values of signal envelopes average
powers in sections



 The outage probability decreases when
Nakagami severity parameter m1 in the
first section increases, Nakagami severity
parameter m2 in the second section
increases, and Nakagami severity
parameter m3 in the third section
increases



Statistics of Product of Three
Nakagami Random Variables

 Product of three Nakagami-m random variables
is:

 Conditional probability density function of x is:
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 After substituting and averaging,
probability density function of x is
derived as
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 After solving we obtain:

 Kn(x) is the modified Bessel function of the
second kind
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 Cumulative distribution function of x is:
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PDF of product of three Nakagami-m
random variables for m1 = m2 =m3 =2



The outage probability of product of three
Nakagami-m random variables for
m1=m2=m3=2



PDF of product of three Nakagami-m
random variables for m1 = m2 =m3 =3.



The outage probability of product of three
Nakagami-m random variables for
m1=m2=m3 =3



 Probability density functions of x are
shown in Figs. 5. and 7 versus of product
of three Nakagami-m random variables

 Severity parameters of Nakagami-m fading
are m1 = m2 =m3 =2 in Fig. 5 and
m1=m2=m3 = 3 in Fig. 7

 Signal envelope average powers are
Ω1=Ω2 = Ω3 =1 in both figures



 In Figs. 6 and 8, the outage probability
depending of product of three
Nakagami-m random variables is
shown for several values of Nakagami
severity parameters and several values
of signal envelopes average powers in
sections



 The outage probability decreases when
severity Nakagami parameter m1 in the
first section increases, severity
Nakagami parameter m2 in the second
section increases, and severity
Nakagami parameter m3 in the third
section increases



Conclusion 4

 In this part of Lecture, wireless mobile relay
radio communication system with three
sections operating over Nakagami-m small
scale fading channel is considered

 Nakagami- Nakagami- Nakagami relay
channel is defined

 For proposed relay system, the outage
probability is determined



 In this work, probability density functions and
cumulative distribution functions of minimum
of three Nakagami random variables and
product of three Nakagami random variables
are evaluated

 Cumulative distribution function of minimum
of three Nakagami random variables is
derived in the closed form

 Cumulative distribution function of product of
three Nakagami random variables is
obtained as expression with one integral



 For both cases, the outage probability
decreases when severity parameters of
Nakagami fading increase at any
sections

 These results are useful for designing
of wireless mobile relay radio
communication system with more
sections in the presence of gading



Outline

 THE FIRST ORDER PERFORMANCE OF PRODUCT

OF THREE RICIAN RANDOM VARIABLES

– PDF of Product of Three Rician RVs

– CDF of Product of Three Rician RVs

– Outage probability of Product of Three
Rician RVs

 THE SECOND ORDER PERFORMANCE OF THE

PRODUCT OF THREE RICIAN RANDOM

VARIABLES

– LCR of Product of Three Rician RVs

– AFD of Product of Three Rician RVs
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 A generic distribution, referred as
N*Nakagami, obtained as the product of N
statistically independent, but not necessarily
identically distributed, Nakagami-m random
variables is introduced

 The proposed distribution is a convenient
tool for analyzing the performance of digital
communication systems over generalized
fading channels



 The moments-generating function (MGF),
PDF, CDF, and moments of the N*Nakagami
distribution are derived in closed-form

 Then, closed form expressions for the outage
probability, amount of fading, and average
symbol error probability for several binary
and multilevel modulation signals of digital
communication systems operating over the
N*Nakagami fading channel model are
presented



Level Crossing Rate of Wireless Relay
System with Three Sections Output Signal
Envelope in the Presence of Multipath k-µ

Fading

Dragana Krstic,

Danijela Aleksic, Goran Petkovic,

Ivica Marjanovic Mihajlo Stefanovic



 In this part of work, the wireless relay system
with three sections in the presence of
multipath k-µ fading is presented

 The useful closed form expression for the
average Level Crossing Rate (LCR) is
calculated

 The resulting integrals are solved by using
the Laplace approximating formula for two
random variables



 Product of three k-µ random variables x1, x2

and x3 is:

 x1, x2 and x3 are independent

 Then it is valid:
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 The first derivative of product of three k-µ
random variables x1, x2 and x3 is:

 The first derivative of k-µ random process is
Gaussian distributed

 The linear combination of Gaussian random
processes is Gaussian random process.
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 Therefore, the first derivative of product of
three k-µ random variables has conditional
Gaussian distribution

 The main of is zero

 The variance of is:
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 Here:

 fm is maximal Dopler frequency

 Ωi, i=1, 2, 3, are power of k-µ random
variables and

 µ is severity of k-µ fading
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 The joint probability density function of z, ,
x2 and x3 is:

 and:
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 The joint probability density function of z and
can be calculated by integrating:
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 The level crossing rate of product of three k-µ random
processes can be calculated as average value of the first
derivative of product of three k-µ random processes:
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 We applied:

 The probability density functions of k-µ
random variables x1, x2 and x3 are given by
k-µ distribution earlier









22

1 2

2

2

0

z

z

z

zezzd 





 






 The expression for average level crossing rate of
product of three k-µ random processes becomes:
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 The integral J is:
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 Previous integral is solved by usage of the Laplace
approximation formula:

 with B defined by dint of:
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 The functions g(x2, x3) and f(x2, x3) are:
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 x2m and x3m are determined from the next
equations:
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 In Fig. 1, the normalized average level
crossing rate of product of three k-µ random
processes is presented

 The family of curves is shown for several
values of Rician factor, k-µ fading parameter
µ and average signal envelope powers at
sections, Ω

 Rician factor k and fading parameter µ are
equal to 1 in all cases



Average level crossing rate (LCR) versus
output signal envelope for µ=1 and k=1



 Signal envelope powers are variable

 It is visible from this graph that average level
crossing rate increases when average signal
envelope power decreases

 The influence of average signal envelope
power on average level crossing rate is
higher for lower values of average signal
envelope power



Average level crossing rate (LCR) versus
output signal envelope for Ω=1 and µ=1



 In this Figure, the normalized average level crossing
rate of product of three k-µ random processes is
shown for several values of Rician factor k, while
parameter µ and average signal envelope power Ω 
have constant values: µ=1 and Ω=1 for all curves

 It can be seen from this figure that average LCR
increases with decreasing of Rician factor

 The influence of Rician factor on average LCR is
higher for lower values of Rician factor k



Conclusion 5

 By this result, average level crossing rate of
product of three Nakagami-m random
processes or average level crossing rate of
product of three Rician random processes
can be evaluated

 Average level crossing rate can be used for
evaluation the average fade duration (AFD)
of relay system with three sections in the
presence of k-µ multipath fading



 The system performance is better for lower
values of average level crossing rate

 The average level crossing rate decreases
when Rician factor increases, dominant
component power increases and scattering
components power decreases

 For higher values of parameter µ average
level crossing rate has lower values and
outage probability decreases



 When average power at sections increases,
average level crossing rate decreases

 The numerical expressions show the
influence of Rician factor, k-µ multipath
fading parameter µ and average powers on
average LCRof product of three k-µ random
processes

 The expression for the LCR can be used for
calculating the average fade duration of the
proposed relay system
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 Two wireless relay communication systems
with two sections on selection combining
(SC) are considered in this part of Lecture

 Received signal in sections experiences κ-μ
small scale fading

 Signal envelope at output of relay systems
can be evaluated as product of signal
envelopes in sections



 The probability density function (PDF) and
cumulative distribution function (CDF) at output
of relay system are calculated

 SC receiver selects relay system with higher
signal envelope at its inputs

 Thus, PDF and CDF of SC receiver signal
envelope are calculated by solving integrals in
the closed forms by using sums and Bessel
function of the second kind



 Then, they are graphically presented

 The influence of Rician factors of κ-μ short
term fading in sections and κ-μ short term
fading severity parameters on the outage
probability of considered relay system is
analyzed and discussed

 These results serve to designers of wireless
systems to choose optimal system parameters
in appropriate fading environment



Introduction

 Here, two relay systems on selection
combining (SC) receiver are considered

 Such relay system has two sections

 Received signal in each section is subjected
to κ-μ short term fading

 Signal envelope at output of proposed
wireless relay system can be evaluated as
maximum of two signal envelopes at outputs
of relay systems



 In this part, two wireless relay communication systems
with two sections and with SC receiver in the presence
of κ-μ short term fading in sections are studied

 Signal envelopes at output of relay systems can be
written as product of two κ-μ random variables

 Therefore, probability density function and cumulative
distribution function of product of two κ-μ random
variables with different parameters are evaluated



System model

System model
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System model

 In this paper, the wireless relay
communication mobile radio system with SC
receiver is considered

 Model of proposed system is shown in
previous Figure



 The signal envelopes x1 and x2 follow κ-μ
distribution:
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 By solving we have:
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 Random variables y1 and y2, also, follow κ-μ
distribution:
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 Random variable x can be evaluated as
product of two κ-μ random variables:

 PDF of x is:
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 After solving we have:

 Here, Kn(x) is the modified Bessel function of the
second kind with argument x and order n
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 CDF of x is:
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 Similarly, the PDF of y is:
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 The CDF of y is:
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 The outage probability is probability that
communication relay system output signal
envelope drops below the defined threshold

 The outage probability for this case is equal
to the CDF of product of signal envelopes at
sections



The CDF of SC Receiver
Output Signal

 The SC receiver output signal is:

z=max(x, y)

 The CDF of z is:

     z x yF z F z F z 



 After solving it is valid:
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Numerical results

 The probability density function of SC receiver
output signal envelope is plotted in next Figures
for some values of fading severity parameter μ
and Rician factors

 In the first Figure, fading severity parameter μ=2
and Rician factors are kij=1; i, j = 1, 2

 In the second one, fading severity parameter μ=3
and Rician factors are kij=2; i, j = 1, 2



Fig. 2. PDF of x for μ=2 and kij=1



Fig. 3. PDF of x for μ=3 and kij=2



 The cumulative distribution functions of SC
receiver output signal envelope are plotted in
the next few Figures for different quantities of
fading severity parameter μ and Rician
factors

 In first some figures, parameter μ=2, and in
last two, fading severity parameter μ=3

 The CDF is plotted for variable parameters κ



The cumulative distribution function of SC receiver output signal
envelope



The CDF of SC receiver output signal envelope



The cumulative distribution function of SC receiver output signal
envelope



 It is visible that CDF increases with increasing
of the signal envelope

 The cumulative distribution function decreases
for larger values of Rician factor κij

 Also, one can see from these figures that CDF
is smaller for bigger values of fading severity
parameter μ

 System performances are better for lower
values of the outage probability



Conclusion 6

 In this article, wireless system with two relay
communication systems, both with two sections,
whose outputs are inputs in SC receiver, in the
presence of κ-μ short term fading in sections, is
studied

 Signal envelopes at output of relay systems are
products of two κ-μ random variables

 The probability density function and cumulative
distribution function of products of two κ-μ random

variables with different parameters are evaluated



 The signal envelope at output of proposed
system is presented as maximum of signal
envelopes at outputs of relay systems

 Then, probability density function, cumulative
distribution function and outage probability of
considered system are determined and the
influence of Rician factors at sections on
outage probability is analyzed and discussed
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