Why Multipath TCP Degrades Throughput Under Insufficient Send Socket Buffer and Differently Delayed Paths

Toshihiko Kato, Adhikari Diwakar, Ryo Yamamoto, Satoshi Ohzahata University of Electro-Communications Email: kato@net.lab.uec.ac.jp

Presenter: Toshihiko Kato

- Professor of University of Electro-Communications located in Tokyo, Japan
- Research interest includes communication protocols, such as TCP, Contents centric networks.
- This paper focuses on the behavior of Multipath TCP under limited send socket buffer.
 - MPTCP throughput degrades worse than single path TCP when send socket buffer size is not sufficient (we pointed out in previous paper).
 - This paper discusses why such degradation happens.

1. Introduction (1)

- Recent Mobile Terminals : Multiple Network Interfaces (WLAN/LTE)
- TCP using Multiple Interfaces : Multipath TCP
 - Multiple TCP connections (Subflows) => One MPTCP connection
 - Application Does Not care about MPTCP
- Three RFCs
 - RFC 6182 : Guideline for Protocol Design
 - RFC 6824 : Detailed Protocol Procedures
 - RFC 6356 : Congestion Control

1. Introduction (2)

- Changing path delay and send socket buffer size (receive socket buffer large enough)
 - Send socket buffer ⇒ retransmission, not appear as protocol parameter
- Under some conditions: Throughput is lower than one TCP connection
 - Send socket buffer among subflows
 - Due to starvation of send socket buffer, data sending stops
 - A kind of Head-of-Line blocking


1. Introduction (3)

This paper:

- Analyze Linux MPTCP software
- Estimate the reason for throughput degradation

2. Related Work (1)

- MPTCP: locate over TCP
- Suflows (legacy TCP connection) and MPTCP connection
 - MP_CAPABLE TCP option in first subflow
 - MP_JOIN TCP option in second subflow
 - Associate subflows and MPTCP connection

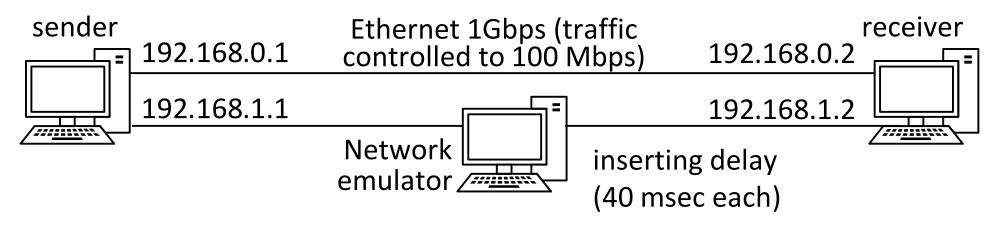
2. Related Work (2)

- MPTCP level data sequencing: Data Sequence Signal (DSS) option
 - Data Sequence Number / Data Acknowledgment (DACK)

Kind (= 30)	Length	Subtype (= 2)	Flags
Data ACK (4 or 8 octets, depending on flags)			
Data sequence number (4 or 8 octets, depending on flags)			
Subflow sequence number (4 octets)			
Data-level length (2 octets)		Checksum (2 octets)	

2. Related Work (3)

- NO window size parameter in MPTCP
 - Share window size among MPTCP connection and subflows
- Recommended receive socket buffer size


Buffer size =
$$\sum_{i}^{\infty} bw_i \times RTT_{max} \times 2$$

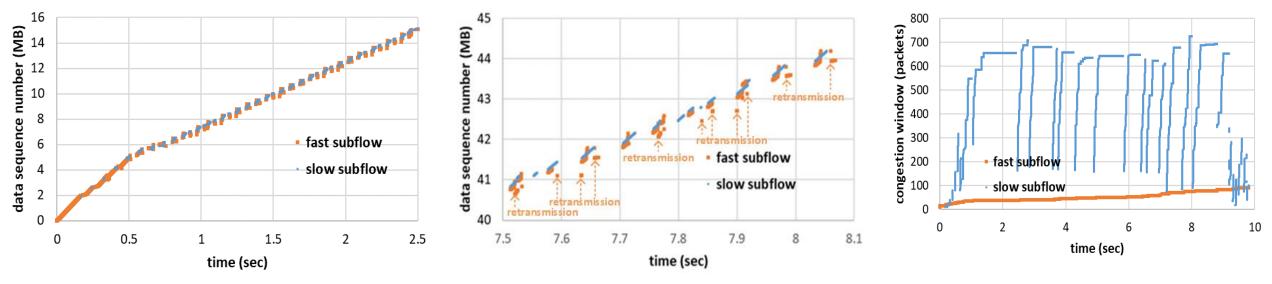
2. Related Work (4)

- Scheduler: Assign data from application to subflows
- Dafault scheduler: minRTT:
 - select a subflow with smallest RTT
 - send data continuously according to advertised window and congestion window
 - opportunistic retransmission and penalization (RP) mechanism

3. Throughput Degradation due to Insufficient Send Socket Buffer

A. Experimental settings

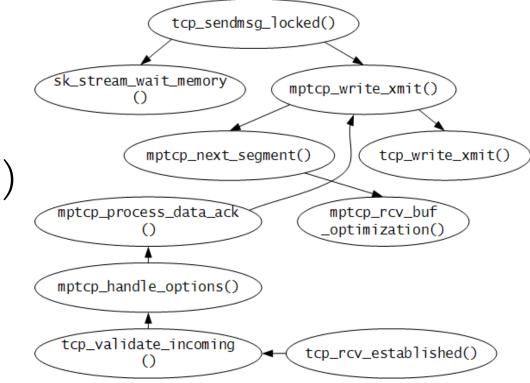
Send socket buffer size: 1,048,576 bytes (1 Gibibytes)

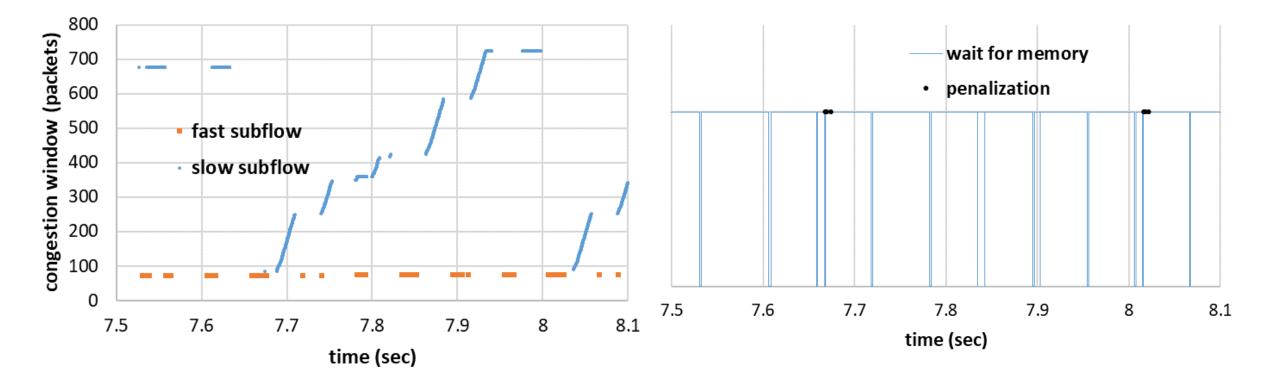

Receive socket buffer size: default setting

4,096, 87380, and 6,291,456 bytes for the minimum, default, and maximum sizes 3. Throughput Degradation due to Insufficient Send Socket Buffer

- B. Results and analysis
- 5 experiment runs

Throughput measured at receiver side: 42.4 to 49.8 Mbps


Slower than 100 Mbps


Intermittent data transfer

4. Analysis of Linux MPTCP Software A. Internals of Linux MPTCP

- Data sending from upper layer is done by tcp_sendmsg_locked()
- Send socket buffer starvation is handled by sk_stream_wait_memory()
- RP mechanism is handed by mptcp_rcv_buf_optimization(), independently of send socket buffer processing

4. Analysis of Linux MPTCP Software B. Behaviors of Linux MPTCP Software

5. Conclusions

- We showed this situation by the experiments using the inhouse network and discussed the details of the MPTCP parameters during the degradation.
- We also showed the internal structure of Linux MPTCP software focusing on the buffer starvation and the MPTCP scheduler.
- We showed a possible reason why the performance degradation occurs.