
Why Multipath TCP Degrades Throughput
Under Insufficient Send Socket Buffer and

Differently Delayed Paths

Toshihiko Kato, Adhikari Diwakar, Ryo Yamamoto,

Satoshi Ohzahata

University of Electro-Communications

Email: kato@net.lab.uec.ac.jp

Presenter: Toshihiko Kato
• Professor of University of Electro-Communications located in

Tokyo, Japan

• Research interest includes communication protocols, such as
TCP, Contents centric networks.

• This paper focuses on the behavior of Multipath TCP under
limited send socket buffer.
• MPTCP throughput degrades worse than single path TCP when

send socket buffer size is not sufficient (we pointed out in previous
paper).

• This paper discusses why such degradation happens.

1. Introduction (1)
• Recent Mobile Terminals： Multiple Network Interfaces
（WLAN/LTE）

• TCP using Multiple Interfaces：Multipath TCP
• Multiple TCP connections (Subflows) => One MPTCP
connection

• Application Does Not care about MPTCP

• Three RFCs
• RFC 6182： Guideline for Protocol Design
• RFC 6824： Detailed Protocol Procedures
• RFC 6356： Congestion Control

1. Introduction (2)

• Changing path delay and send socket buffer size
(receive socket buffer large enough)

• Send socket buffer ⇒ retransmission, not appear as protocol
parameter

• Under some conditions: Throughput is lower than one TCP
connection
• Send socket buffer among subflows

• Due to starvation of send socket buffer, data sending stops

• A kind of Head-of-Line blocking

1. Introduction (3)

This paper:

• Analyze Linux MPTCP software

• Estimate the reason for throughput degradation

2. Related Work (1)

• MPTCP： locate over TCP

• Suflows（legacy TCP connection）and MPTCP connection
• MP_CAPABLE TCP option in first subflow
• MP_JOIN TCP option in second subflow

• Associate subflows and MPTCP connection

Application

MPTCP

Subflow (TCP) Subflow (TCP)

IP IP

2. Related Work (2)

• MPTCP level data sequencing: Data Sequence Signal （DSS) option
• Data Sequence Number／Data Acknowledgment（DACK）

Kind (= 30) Length
Subtype

(= 2)
Flags

Data ACK (4 or 8 octets, depending on flags)

Data sequence number (4 or 8 octets, depending on flags)

Subflow sequence number (4 octets)

Data-level length (2 octets) Checksum (2 octets)

2. Related Work (3)

• NO window size parameter in MPTCP
• Share window size among MPTCP connection and
subflows

• Recommended receive socket buffer size

Buffer size =

𝑖

𝑛

𝑏𝑤𝑖 × 𝑅𝑇𝑇𝑚𝑎𝑥 × 2

2. Related Work (4)

• Scheduler: Assign data from application to subflows

• Dafault scheduler: minRTT:
• select a subflow with smallest RTT
• send data continuously according to advertised window
and congestion window

• opportunistic retransmission and penalization（RP）
mechanism

3. Throughput Degradation due to Insufficient Send
Socket Buffer

A. Experimental settings

Send socket buffer size: 1,048,576 bytes (1 Gibibytes)

Receive socket buffer size: default setting

4,096, 87380, and 6,291,456 bytes
for the minimum, default, and maximum sizes

Ethernet 1Gbps (traffic
controlled to 100 Mbps)

sender receiver

Network
emulator

192.168.0.1

192.168.1.1

192.168.0.2

192.168.1.2

inserting delay
(40 msec each)

3. Throughput Degradation due to Insufficient Send
Socket Buffer

B. Results and analysis
5 experiment runs

Throughput measured at receiver side: 42.4 to 49.8 Mbps

Slower than 100 Mbps

Intermittent data transfer

4. Analysis of Linux MPTCP Software
A. Internals of Linux MPTCP

Data sending from upper layer is
done by tcp_sendmsg_locked()

Send socket buffer starvation is
handled by sk_stream_wait_memory()

RP mechanism is handed by
mptcp_rcv_buf_optimization(),
independently of send socket buffer
processing

4. Analysis of Linux MPTCP Software
B. Behaviors of Linux MPTCP Software

5. Conclusions

• We showed this situation by the experiments using the in-

house network and discussed the details of the MPTCP

parameters during the degradation.

• We also showed the internal structure of Linux MPTCP

software focusing on the buffer starvation and the MPTCP

scheduler.

• We showed a possible reason why the performance

degradation occurs.

