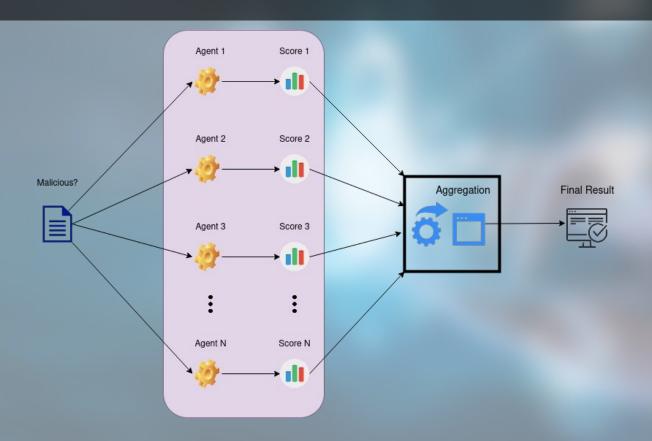


Comparison of a Supervised Trained Neural Network Classifier and a Supervised Trained Aggregation Function Classifier

Alexandre Croix, Thibault Debatty, Wim Mees

Cyber Defense Lab, Royal Military Academy, Belgium

Email: a.croix@cylab.be


Presenter Information - Alexandre Croix

- Graduated as Industrial Engineer in 2018.
- Member of the Cyber Defense Research Unit at Royal Military Academy, Brussels
- GIAC Mobile Device Security Analyst (2019)

Context

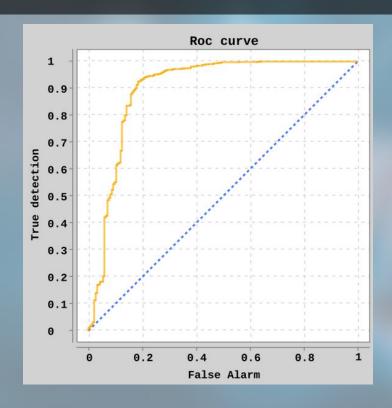
- Cyber-defense systems are complex
- Multi-agents decision systems
- Several evaluation criterion
 - Agents
 - Scores
 - ⇒ Need to aggregate scores

Context

Context

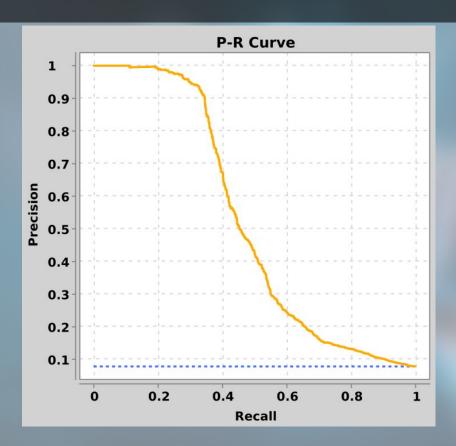
- Compare efficiency two aggregation methods
 - Aggregation function trained by Genetic Algorithm
 - Artificial Neural Network trained by backpropagation
- Supervised training

Context: task


- Training classifiers to distinguish if a PHP file is a webshell or an harmless file
- 23,415 PHP files (from PHP project)
 - · 1,833 webshells
 - Analyzed by a 5-agents webshell detector

Evaluation criterion: ROC AUC

- Receiver Operating Characteristics curve(ROC)
 - Graphical tool
 - TPR against FPR
 - Area Under the Curve (AUC)


Evaluation criterion: ROC AUC

Evaluation criterion: P-R AUC

- Precision-Recall curve (P-R)
 - Graphical tool
 - Precision against Recall
 - More informative for imbalanced dataset
 - Area Under the Curve (AUC)

Evaluation criterion: P-R AUC

Aggregation function: WOWA

- Weighted Ordered Weighted Averaging
- Introduced in 1997 by Vicenç Torra
- Combines WM and OWA advantages
- Requires two parameters for each data source
 - More complex

Aggregation function: WOWA

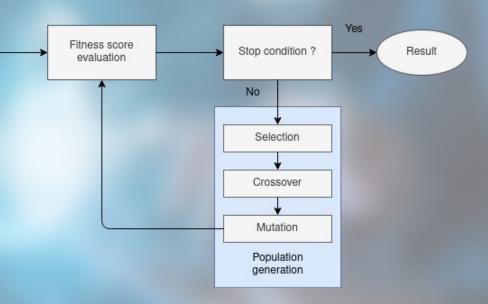
$$WOWA = f(a_1, a_2, \ldots, a_n, w_1, w_2, \ldots, w_n, p_1, p_2, \ldots, p_n)$$

where

 a_i are data sources

 w_i are WM weights

 p_i are OWA weights


Genetic Algorithm

Iterative process

Initial population generation

Population of potential solutions

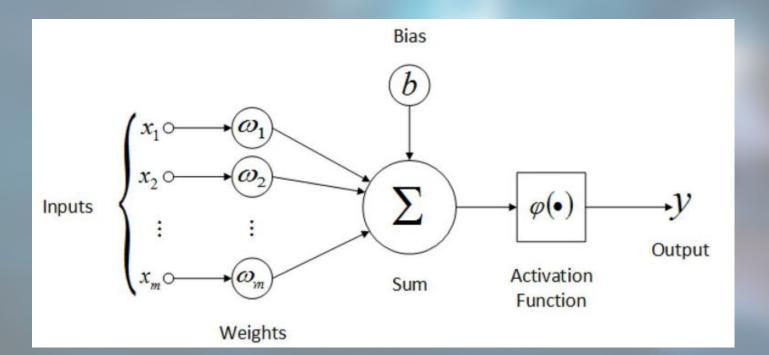
- Two weight vectors (w and p)
- Parameters to tune

Genetic Algorithm: parameters

- Parametric study
 - Population number: 40 to 200
 - · Crossover rate: 5 to 95
 - Mutation rate: 5 to 95
 - · Fitness score evaluation: "Distance" or "AUC"

Genetic Algorithm: fitness score

Distance:


- WOWA for each population element
- Difference with the dataset result
- Add all differences

· AUC:

- WOWA for each population element
- AUC of ROC curve

Neural Network

Interconnection of neurons

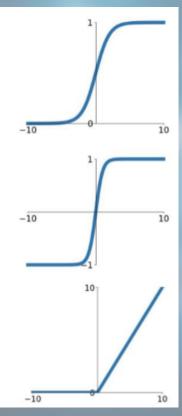
Neural Network: structure

Neural Network: parameters

- Hyperparametric study
 - Neurons number: 5 to 50
 - Learning rate: 0.1 to 0.9, 0.01 to 0.09, 0.001 to 0.009
 - Batch Size: 1000 to 2000
 - Epochs Number: 100 to 350
 - Activation Function: tanh, ReLu, Sigmoid

Neural Network: parameters

Sigmoid $\sigma(x) = \frac{1}{1+e^{-x}}$


$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0,x)$

Evaluation

- k-fold cross validation
 - Dataset separates in k folds
 - · k 1 folds used for training
 - Last fold for evaluation (P-R AUC and ROC AUC)
 - Repeat k times, rotating test set
 - Mean of intermediate results

Results: Genetic Algorithm

ROC criteria

- Population size: 75
- Crossover rate: 40
- Mutation rate: 20
- Fitness function: AUC

P-R criteria

- Population size: 130
- Crossover rate: 30
- Mutation rate: 5
- · Fitness function: AUC

Result ≈0.88

Result ≈ 0.73

Results: Neural Network

ROC criterion

- Neurons number: 38
- Learning rate: 0.04
- . Batch size: 2000
- . Epochs number: 350
- Activation function: ReLu

P-R criterion

- Neurons number: 38
- Learning rate: 0.05
- . Batch size: 2000
- Epochs number: 350
- . Activation function: ReLu

Results [0.92;0.95[

Results [0.78; 0.84[

Results: comparison

- 10 times a k-fold cross validation
- Variance minimization

Classifier	ROC	P-R
Genetic Algorithm	0.900598	0.745871
Neural Network	0.946812	0.812567

Conclusions and future works

- Neural Network
 - More efficient
 - ReLu activation function always the best
 - Slow
 - Requires GPU (expensive)
- Genetic Algorithm
 - AUC fitness score always the best
 - Results can be interpreted

Conclusions and future works

- Bigger parametric study
- Other type of data
 - Dataset dependent?
- Correlation between parameters