

Clustering Techniques for On-Demand Transport Data: a case study

Pedro Afonso, Ana Alves Pedro Afonso a21240004@isec.pt¹

The Ninth International Conference on Intelligent Systems and Applications

INTELLI 2020

Biography

- Carlos Pedro Marques Afonso
- 23 years old
- Graduated in Computer Engineering from the Polytechnic Institute of Coimbra, more specifically at the Instituto Superior de Engenharia de Coimbra
- Finishing the Master's degree in Informatics and Systems, software development branch
- Computer Engineer at The Municipality of Estarreja

Table of contents

- Motivations
- Goals
- Related Work
- Clustering
 - O K-Means
 - O DBSCAN
- Comparison of Techniques
- Case Study
- Conclusions
- Future work

Transport On Demand has a great impact on urban mobility

Motivations

- Reduce the number of vehicles needed
- Reduce the amount of pollution needed
- Decrease the difficulties in arranging parking
- Increase the flow of transit routes

Goals

Analyse existing clustering algorithms, namely K-Means and DBSCAN

• Choose the best one to use in the case study

• Apply the algorithm to a sample dataset and evaluate it to define pickup zones that can help us improve transport routes

Overview of Related Work

 DBSCAN was already used to group other types of geo-referenced data apart from transport requests

• It was found to be the most used for on-demand transport domain

Grouping of people

- There are financial incentives and methods of road organizations to group as many people in each vehicle as:
 - High-occupancy vehicle lanes
 - High-occupancy toll lanes
 - Slugging lines

K-Means 4 Cluster 1 Cluster 2 3 Centroids х 2 1 0 -1 -2 -3 -4 -2 0 2 4 -4

10

DBSCAN

Technique comparison

- Feature A: ability to identify clusters with random shapes
- Feature B: ability to identify clusters in datasets with high data volume
- Feature C: good performance in obtaining results
- Feature D: ability to deal with noise
- Feature E: parameterization/initial configuration of the algorithm
- Feature F: Handle numeric values

Quoted from the thesis of "Análise de dados e Machine Learning na Mobilidade Urbana" by João Pedro Fernandes Simões (<u>https://comum.rcaap.pt/bitstream/10400.26/29858/1/Joao-Pedro-Fernandes-simoes.pdf</u>)

Technique comparison

Algorithm	A	В	С	D	E
K-Means	Х	Х	Х	Х	~
DBSCAN	~	~	>	>	~

Case Study – Clustering pickup locations

https://github.com/pedroafonsoo/clustering_case_study_industrial_seminars/blob/ master/dbscan_case_study_dbscan.ipynb

Conclusions

- DBSCAN algorithm is the most appropriate to aggregate transport requests compared to K-Means
- By applying the algorithm with a real data subset, we obtained the set of associated clusters that define pickup points, with a strong silhouette value, indicating quality in the result

Future work

- Challenge: There should be a limit in the maximum number of elements in each cluster!
 - Because in a vehicle there is a certain number of passengers and in a cluster, there can be more passengers than the maximum capacity that the vehicle allows

Future work

• Combine the DBSCAN clustering technique with Constrained K-Means

 Constrained K-Means restrict the capacity of the minimum and maximum number of points for each cluster and at the same time guarantee the optimization of the distance between the points

Thanks!